×

zbMATH — the first resource for mathematics

Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias. (English) Zbl 1060.74606
Summary: This paper is concerned with an analysis of the mesh dependence of results from numerical failure analyses using the strong discontinuity approach (SDA) based on an analytical and numerical comparison with a standard plasticity model, pertaining to the classical fracture energy based smeared crack concept using a consistent characteristic length. The SDA is characterized by incorporating the kinematics of fractured solids locally within the finite element. The resulting jumps in the displacement field are captured by their corresponding singularly distributed strains. For the analytical and numerical study of the mesh dependence only mode-I failure is considered. Analogies and differences of both finite element formulations are investigated and evaluated.

MSC:
74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alfaiate, J.; Wells, G.N.; Sluys, L.J., On the use of embedded discontinuity elements with path continuity for mode-i and mixed-mode fracture, Engrg. fract. mech., 69, 6, 661-686, (2002)
[2] Armero, F.; Garikipati, K., Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, (), 547-561
[3] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. solids struct., 33, 2863-2885, (1996) · Zbl 0924.73084
[4] Babuška, I.; Melenk, J.M., The partition of unity method, Int. J. numer. methods engrg., 40, 727-758, (1997) · Zbl 0949.65117
[5] Bažant, Z.P.; Pijaudier-Cabot, G., Nonlocal damage, localization, instability and convergence, J. appl. mech., 55, 287-293, (1988) · Zbl 0663.73075
[6] Borja, R.I., A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Comput. methods appl. mech. engrg., 190, 1529-1549, (2000) · Zbl 1003.74074
[7] Borja, R.I.; Regueiro, A.R., Strain localization in frictional materials exhibiting displacement jumps, Comput. methods appl. mech. engrg., 190, 2555-2580, (2001) · Zbl 0997.74009
[8] Chen, W.F.; Han, D.J., Plasticity for structural engineers, (1988), Springer New-York, Berlin, Heidelberg · Zbl 0666.73010
[9] Crisfield, M.A., Difficulties with current numerical models for reinforced concrete and some tentative solutions, (), 331-358
[10] De Borst, R., Simulation of strain localization: a reappraisal of the Cosserat continuum, Engrg. comput., 8, 317-332, (1991)
[11] De Borst, R., Some recent issues in computational mechanics, Int. J. numer. methods engrg., 52, 63-95, (2001)
[12] De Borst, R.; Mühlhaus, H.B., Gradient-dependent plasticity: formulation and algorithmic aspects, Int. J. numer. methods engrg., 35, 521-539, (1992) · Zbl 0768.73019
[13] K. Garikipati, On strong discontinuities in inelastic solids and their numerical simulation, Ph.D. Thesis, Stanford University, 1996 · Zbl 0924.73084
[14] M. Jirásek, Numerical modeling of deformation and failure of materials, Lecture notes, 1999
[15] Jirásek, M.; Zimmermann, T., Embedded crack model: part I: basic formulation, part II: combination with smeared cracks, Int. J. numer. methods engrg., 50, 1269-1305, (2001) · Zbl 1013.74068
[16] Johnson, C.; Scott, R., A finite element method for problems in perfect plasticity using discontinuous trial functions, (), 307-324
[17] Lubliner, J., Plasticity theory, (1997), Maxwell Macmillan International Edition · Zbl 0288.73029
[18] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[19] J. Mosler, Finite Elemente mit sprungstetigen Abbildungen des Verschiebungsfeldes für numerische Analysen lokalisierter Versagenszustände in Tragwerken, Ph.D. Thesis, Ruhr University Bochum, 2002
[20] J. Mosler, G. Meschke, 3D FE analysis of cracks by means of the strong discontinuity approach, in: E. Oñate, G. Bugeda, B. Suárez (Eds.), European Congress on Computational Methods in Applied Sciences and Engineering, 2000
[21] J. Mosler, G. Meschke, A comparison of embedded discontinuity approaches with fracture energy based smeared crack models, in: Fifth World Congress on Computational Mechanics, 2002 · Zbl 1060.74606
[22] J. Mosler, G. Meschke, 3D modeling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations. Int. J. Numer. Methods Engrg., in press · Zbl 1062.74623
[23] Mühlhaus, H.B.; Aifantis, E.G., A variational principle for gradient plasticity, Int. J. solids struct., 28, 845-857, (1991) · Zbl 0749.73029
[24] Oñate, E.; Oller, S.; Oliver, J.; Lubliner, J., A constitutive model for cracking of concrete based on the incremental theory of plasticty, (), 1311-1330
[25] Oliver, J., A consistent characteristic length for smeared cracking models, Int. J. numer. methods engrg., 28, 461-474, (1989) · Zbl 0676.73066
[26] Oliver, J., Continuum modelling of strong discontinuities in solid mechanics, (), 455-479
[27] Oliver, J., Continuum modelling of strong discontinuities in solid mechanics using damage models, Comput. mech., 17, 1-2, 49-61, (1995), 12 · Zbl 0840.73051
[28] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations part 1: fundamentals. part 2: numerical simulations, Int. J. numer. methods engrg., 39, 3575-3623, (1996) · Zbl 0888.73018
[29] Oliver, J.; Simo, J., Modelling strong discontinuities in solid mechanics by means of strain softening constitutive equations, (), 363-372
[30] Pietruszczak, S.; Mroź, Z., Finite element analysis of deformation of strain-softening materials, Int. J. numer. methods engrg., 17, 327-334, (1981) · Zbl 0461.73063
[31] Pijaudier-Cabot, G.; Bažant, Z.P., Nonlocal damage theory, J. engrg. mech. (ASCE), 113, 1512-1533, (1987)
[32] Regueiro, A.R.; Borja, R.I., A finite element method of localized deformation in frictional materials taking a strong discontinuity approach, Finite elem. anal. des., 33, 283-315, (1999) · Zbl 0979.74072
[33] Simo, J.; Hughes, T.J.R., Computational inelasticity, (1998), Springer New York · Zbl 0934.74003
[34] Simo, J.; Oliver, J., A new approach to the analysis and simulation of strain softening in solids, (), 25-39
[35] Simo, J.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids, Comput. mech., 12, 277-296, (1993) · Zbl 0783.73024
[36] Simo, J.C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. numer. methods engrg., 33, 1413-1449, (1992) · Zbl 0768.73082
[37] Simo, J.C.; Rifai, S., A class mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[38] Steinmann, P.; Willam, K.J., Localization within the framework of micropolar elasto-plasticity, (), 296-313
[39] Wells, G.N.; Sluys, L.J., Analysis of slip planes in three-dimensional solids, Comput. methods appl. mech. engrg., 190, 3591-3606, (2001) · Zbl 0995.74062
[40] Wells, G.N.; Sluys, L.J., Three-dimensional embedded discontinuity model for brittle fracture, Int. J. solids struct., 38, 897-913, (2001) · Zbl 1004.74065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.