zbMATH — the first resource for mathematics

A piezoelectric constitutive theory with rotation gradient effects. (English) Zbl 1060.74542
Summary: Some recent experiments evidenced that the piezoelectric coefficients of such piezoelectric materials as PZT and BiTiO)\(_3\) have an evident dependence on the grain size. With respect to the success of strain gradient theories in interpreting size effect phenomena of conventional (non-piezoelectric) solids and the dependence of piezoelectricity on rotation of polar clusters, a new piezoelectric theory with rotation gradient effects is formulated in the present paper to elucidate the size effect problems of piezoelectric solids. The constitutive relations of materials with different symmetries are specialized, and their corresponding independent material constants are discussed. For the typical 6 mm class of piezoelectric crystalline materials, a potential function method is presented for solving plane problems. The analytical solution of a thin piezoelectric film bonded on a rigid substrate illustrates the size-dependent prediction of the present theory.

74F15 Electromagnetic effects in solid mechanics
Full Text: DOI
[1] Buhlmann, S.; Dwir, B.; Baborowski, J.; Muralt, P., Size effects in mesoscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size, Appl. phys. lett., 80, 3195-3197, (2002)
[2] Chen, S.H.; Wang, T.C., Strain gradient theory with couple stress for crystalline solids, Eur. J. mech. A, 20, 739-756, (2001) · Zbl 1055.74012
[3] Eringen, A.C., Theory of micropolar elasticity, (), 621-729
[4] Eringen, A.C., Nonlocal continuum field theories, (2002), Springer-Verlag New York · Zbl 1023.74003
[5] Essmann, U.; Rapp, M.; Wilkins, M., Die versetzungsanordung in plastisch verformten kupfervielkristallen, Acta. metall., 16, 1275-1287, (1968)
[6] Fleck, N.A.; Hutchinson, J.W., A phenomenological theory for strain gradient effects in plasticity, J. mech. phys. solids, 41, 1825-1857, (1993) · Zbl 0791.73029
[7] Fleck, N.A.; Hutchinson, J.W., Strain gradient plasticity, Adv. appl. mech., 33, 295-361, (1997) · Zbl 0894.73031
[8] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta metall. mater., 42, 475-487, (1994)
[9] Gao, H.; Huang, Y., Taylor-based nonlocal theory of plasticity, Int. J. solids struct., 38, 2615-2637, (2001) · Zbl 0977.74009
[10] Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity. I. theory, J. mech. phys. solids, 47, 1239-1263, (1999) · Zbl 0982.74013
[11] Huang, H.T.; Sun, C.Q.; Zhang, T.S.; Hing, P., Grain-size effects on ferroelectric pb(zr1-xtix)O-3 solid solutions induced by surface bond contraction, Phys. rev. B, 63, 184112, (2001)
[12] Mindlin, R.D.; Tiersten, H.F., Effects of couple-stress in linear elasticity, Arch. rational mech. anal., 16, 51-78, (1962)
[13] Mishima, T.; Fujioka, H.; Nagakari, S.; Kamigake, K.; Nambu, S., Lattice image observations of nanoscale ordered regions in pb(mg1/3nb2/3)O-3, Jpn. J. appl. phys., 36, 6141-6144, (1997)
[14] Multani, M.S.; Palkar, V.R., Morphotropic phase boundary in the PZT system, Mater. rev. B, 17, 101-104, (1982)
[15] Niordson, C.F.; Tvergaard, V., Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal, Eur. J. mech. A, 21, 239-248, (2002) · Zbl 1023.74041
[16] Nowacki, W., Theory of asymmetric elasticity, (1986), Pergamon Press Warszawa · Zbl 0604.73020
[17] Radi, E., Strain-gradient effects on steady-state crack growth in linear hardening materials, J. mech. phys. solids, 51, 543-573, (2003) · Zbl 1100.74625
[18] Shaw, T.M.; Trolier-Mckinstry, S.; Mcintyre, P.C., The properties of ferroelectric films at small dimensions, Annu. rev. mat. sci., 30, 263-298, (2000)
[19] Shvartsman, V.V.; Emelyanov, A.Y.; Kholkin, A.L.; Safari, A., Local hysteresis and grain size effects in pb(mg1/3nb2/3)O-sbtio3, Appl. phys. lett., 81, 117-119, (2002)
[20] Stolken, J.S.; Evans, A.G., A micro-bend test method for measuring the plasticity length scale, Acta. metall. mater., 46, 5109-5115, (1998)
[21] Wang, C.-C., On representations of isotropic functions, Part. I. arch. rational mech. anal., 33, 249-258, (1969)
[22] Wang, C.-C., On representations of isotropic functions, Part. II. arch. rational mech. anal., 33, 268-282, (1969)
[23] Wang, C.-C.; Trusdell, C., Introduction of rational elasticity, (1973), Noordhoff Leyden
[24] Wang, G.F.; Yu, S.W.; Feng, X.Q., Boundary layers near interfaces between crystals with strain gradient effects, Mech. res. commun., 28, 87-95, (2001) · Zbl 1169.74365
[25] Wang, G.F.; Yu, S.W.; Feng, X.Q., A continuum damage theory with rotation gradients, Int. J. damage mech., 12, 179-192, (2003)
[26] Wang, G.F.; Feng, X.Q.; Yu, S.W., Interfacial effects on effective elastic moduli of nanocrystalline materials, Mat. sci. engrg. A., 363, 1-8, (2003)
[27] Zheng, Q.S., Theory of representation of tensor functions—a unified invariant approach to constitutive equation, Appl. mech. rev., 47, 545-587, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.