×

zbMATH — the first resource for mathematics

Statistical complexity and disequilibrium. (English) Zbl 1060.60500
Summary: We study the concept of disequilibrium as an essential ingredient of a family of statistical complexity measures. We find that Wootters’ objections to the use of Euclidean distances for probability spaces become quite relevant to this endeavor. Replacing the Euclidean distance by the Wootters’ one noticeably improves the behavior of the associated statistical complexity measure, as evidenced by its application to the dynamics of the logistic map.

MSC:
60E99 Distribution theory
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Scalapino, D.J., (), and references therein
[2] Silver, R.N., ()
[3] Cover, T.M.; Thomas, J.A., Elements of information theory, (1991), Wiley New York · Zbl 0762.94001
[4] Shannon, C.E.; Shannon, C.E., Bell system tech. J., Bell system tech. J., 27, 623, (1948)
[5] Kolmogorov, A.N.; Sinai, Ja.G., Dokl. akad. nauk SSSR, Dokl. akad. nauk SSSR, 124, 768, (1959)
[6] Beck, C.; Schlögl, F., Thermodynamic of chaotic systems, (1993), Cambridge Univ. Press Cambridge
[7] Huberman, B.A.; Hogg, T., Physica D, 22, 376, (1986)
[8] Grassberger, P., Int. J. theor. phys., 25, 907, (1986)
[9] Crutchfield, J.P., Phys. rev. lett., 63, 105, (1989)
[10] Feldman, D.P.; Crutchfield, J.P., Phys. lett. A, 238, 244, (1998)
[11] Kantz, H.; Kurths, J.; Meyer-Kress, G., Nonlinear analysis of physiological data, (1998), Springer Berlin · Zbl 0890.00050
[12] Shiner, J.S.; Davison, M.; Landsberg, P.T., Phys. rev. E, 59, 1459, (1999)
[13] Crutchfield, J.P.; Feldman, D.P.; Shalizi, C.R., Phys. rev. E, 62, 2996, (2000)
[14] Binder, P.M.; Perry, N., Phys. rev. E, 62, 2998, (2000)
[15] Shiner, J.S.; Davison, M.; Landsberg, P.T., Phys. rev. E, 62, 3000, (2000)
[16] López-Ruiz, R.; Mancini, H.L.; Calbet, X., Phys. lett. A, 209, 321, (1995)
[17] Anteneodo, C.; Plastino, A.R., Phys. lett. A, 223, 348, (1997) · Zbl 0966.82500
[18] Calbet, X.; López-Ruiz, R., Phys. rev. E, 63, 066116, (2001)
[19] Kullback, S.; Leibler, R.A., Ann. math. stat., 22, 79, (1951)
[20] Wootters, W.K., Phys. rev. D, 23, 357, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.