×

zbMATH — the first resource for mathematics

A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. (English) Zbl 1059.78042
Summary: A non-overlapping domain decomposition method (DDM) is proposed herein to solve Maxwell equations in \(\mathbb R^3\). In this work, the Maxwell equations are discretized using a vector finite element method with hierarchical H(curl) vector basis functions. There are two major ingredients in the proposed non-overlapping DDM: (a) A proper first-order transmission condition to enforce field continuity across domain boundaries and (b) A cement technique to allow non-matching grids for neighboring domains. Moreover, a detail Fourier analysis of the transmission condition for a canonical half-space example is presented. The analysis provides significant insights into the convergence behavior of the proposed non-overlapping DDM for solving electromagnetic radiation problems, such as the large finite antenna arrays. Particularly for the antenna arrays, the proposed non-overlapping DDM is extremely efficient since the formulation can easily incorporate geometrical repetitions. Exponentially tapered notch (Vivaldi) antenna arrays with size up to \(100\times 100\) elements are solved on a common PC to validate the proposed non-overlapping DDM.

MSC:
78M25 Numerical methods in optics (MSC2010)
78A55 Technical applications of optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jin, J., The finite element method in electromagnetics, X, (2002), IEEE Press New York
[2] Colton, D.; Kress, R., Integral equation methods in scattering theory, (1983), Wiley New York · Zbl 0522.35001
[3] Taflove, A., Computational electrodynamics: the finite-difference time-domain methoartech house, (1995), Artech House Boston
[4] Smith, B.; Bjørstad, P.; Gropp, W., Domain decomposition parallel multilevel methods for elliptic partial Cambridge university press, (1996), Cambridge University Press New York
[5] M. Gander, L. Halpern, F. Nataf, Optimized Schwarz methods, in: Proceedings of the 12th International Conference on Domain Decomposition Methods, Chiba, Japan, 2001, pp. 15-26
[6] Gander, M.; Magoulès, F.; Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. sci. comput., 24, 1, 38-60, (2002) · Zbl 1021.65061
[7] Benamou, J.-D.; Després, B., A domain decomposition method for the Helmholtz equation and related optimal control problems, J. comput. phys., 136, 68-82, (1997) · Zbl 0884.65118
[8] Schwarz, H.A., Uber einige abbildungsdufgaben, J. reine angew. math., 70, 105-120, (1869)
[9] Quarteroni, A.; Valli, A., Domain decomposition methods for partial differential equations, (1999), Oxford University Press New York · Zbl 0931.65118
[10] Deng, Q., An optimal parallel nonoverlapping domain decomposition iterative procedure, SIAM J. numer. anal., 41, 3, 964-982, (2003) · Zbl 1049.65144
[11] Lions, P.-L., On the Schwarz alternating methods III: A variant for nonoverlapping subdomains, (), 202-223
[12] Piacentini, A.; Rosa, N., An improved domain decomposition method for the 3D Helmholtz equation, Comput. methods appl. mech. engrg., 162, 113-124, (1998) · Zbl 0936.65139
[13] B. Després, Méthodes de décomposition de domaine pour les problémes de propagation d’ondes en régime harmonique, Ph.D dissertation, Paris, 1991 · Zbl 0849.65085
[14] Després, B.; Joly, P.; Roberts, J.E., A domain decomposition method for the harmonic Maxwell equations in iterative methods in linear algebra, (1992), North-Holland Amsterdam, pp. 245-252
[15] Collino, F.; Delbue, G.; Joly, P.; Piacentini, A., A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations, Comput. methods appl. mech. engrg., 148, 195-207, (1997) · Zbl 0902.65074
[16] Stupfel, B.; Mognot, M., A domain decomposition method for the vector wave equation, IEEE trans. antennas propagat., 48, 5 (May), 653-660, (2000) · Zbl 1113.78320
[17] Arbogast, T.; Yotov, I., A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids, Comput. methods appl. mech. engrg., 149, 255-265, (1997) · Zbl 0923.76100
[18] Achdou, Y.; Japhet, C.; Nataf, F.; Maday, Y., A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case, Numer. math., 92, 593-620, (2002) · Zbl 1019.65086
[19] A. Alonso-Rodriguez, R. Hiptmair, A. Valli, Hybrid formulations of eddy current problems, Report UTM 663, Universita Degli Studi Di Trento, Trento, Italy, March 2004 · Zbl 1114.78012
[20] Joly, P., Variational methods for time-dependent wave propagation problems, (), 201-264 · Zbl 1049.78028
[21] Wieners, C.; Wohlmuth, B., The coupling of mixed and conforming finite element discretizations, (), 453-459, August 1997
[22] Bernardi, C.; Maday, Y.; Patera, A., A new nonconforming approach to domain decomposition: the mortar element method, (), 13-51 · Zbl 0797.65094
[23] Wohlmuth, B.I., Discretization methods and iterative solvers based on domain decomposispringer-verlag, (2001), Springer Berlin
[24] Nèdèlec, J.-C., Mixed finite elements in R3, Numer. math., 35, May, 315-341, (1980)
[25] Lee, J.F.; Sun, D.K., Pmus (p-type multiplicative Schwarz) method with vector finite elements for modeling three-dimensional waveguide discontinuities, IEEE trans. microwave theory tech., 52, March, 864-870, (2004)
[26] Hiptmair, R., Multigrid method for maxwell’s equations, SIAM J. numer. anal., 36, 204-225, (1998) · Zbl 0922.65081
[27] Sun, D.K.; Cendes, Z.J.; Lee, J.F., Adaptive mesh refinement, h-version, for solving multiport microwave devices in three dimensions, IEEE trans. magn., 36, 4 (July), 1596-1599, (2000)
[28] Peterson, A.F., Absorbing boundary conditions for the vector wave equation, Microwave opt. tech. lett., 1, April, 62-64, (1998)
[29] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second order elliptic problems, () · Zbl 0362.65089
[30] Jackson, J.D., Classical electrodynamics, (1999), Wiley New York · Zbl 0114.42903
[31] Collin, R.E., Field theory of guided waves, (1991), IEEE Press/Oxford University Press Piscataway · Zbl 0876.35113
[32] Uwano, T.; Itoh, T., Spectral domain approach, ()
[33] Sommerfeld, A., Partial differential equations in physics, (1949), Academic Press New York
[34] M.N. Vouvakis, S.-C. Lee, J.-F. Lee, A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems, IEEE Trans. Antennas Propagat., in press · Zbl 1368.78066
[35] Holter, H.; Steyskal, H., Some experiences from FDTD analysis of infinite and finite multi-octave phased arrays, IEEE trans. antennas propagat., 50, 12 (December), 1725-1731, (2002)
[36] Ana Alonso-Rodriguez, Luca Gerardo-Giorda, New non-overlapping domain decomposition methods for the harmonic Maxwell system, Report R.I. N^{0} 529, Ecole Polytechnique, April 2004 · Zbl 1106.78014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.