zbMATH — the first resource for mathematics

2D pseudo-spectral parallel Navier-Stokes simulations of compressible Rayleigh-Taylor instability. (English) Zbl 1059.76053
Summary: A 2D Fourier-Chebyshev pseudo-spectral numerical method for full Navier-Stokes equations with a dynamical domain decomposition technique has been parallelized on a SPMD machine, a CRAY-T3E. The parallelism is based on the distribution of data among processors and on simultaneous computations on each subdomain. The SHMEM paradigm is used for communication between processors. Comparisons between vectorial and parallel versions of spectral derivatives with Fourier and Chebyshev expansions are presented. Performances versus the number of processors and collocation points are also studied. The numerical code is then used to simulate single and multimode Rayleigh-Taylor flows. The influence of the physical diffusion between species is emphasized on a single mode configuration. A simulation with 22 initial perturbation modes is also carried out and analyzed.

76M22 Spectral methods applied to problems in fluid mechanics
76E17 Interfacial stability and instability in hydrodynamic stability
76N15 Gas dynamics (general theory)
65Y05 Parallel numerical computation
Full Text: DOI
[1] Moin, P.; Kim, J., Numerical investigation of turbulent channel flow, J fluid mech, 118, 341-377, (1982) · Zbl 0491.76058
[2] Leca, P.; Roy, Ph., Simulation numérique de la turbulence sur un système multiprocesseur, EDF bulletin de la direction des études et recherches–Série C, 1, 95-101, (1983)
[3] Fisher, P.F., Analysis and application of a parallel spectral element method for the solution of the navier – stokes equations, (), 483-491 · Zbl 0722.76059
[4] Fisher, P.F.; Patera, A., Parallel spectral element solution of the Stokes problem, J comput phys, 92, 380-421, (1991) · Zbl 0709.76106
[5] Erlebacher, G.; Bokhari, S.H.; Hussaini, M.Y., Parallelization of a three-dimensional compressible transition code, Aiaa j, 28, 1, 83-90, (1990)
[6] Pelz, R.B., Fourier spectral method on ensemble architectures, Computer meth appl mech engng, 89, 529-542, (1991)
[7] Pelz, R.B., The parallel Fourier pseudospectral method, J comput phys, 92, 296-312, (1991) · Zbl 0709.76105
[8] Chu, D.; Henderson, R.; Karniadakis, G.E., Parallel spectral-element-Fourier simulation of turbulent flow over riblet-mounted surfaces, J sci comput, 3, 219-229, (1992) · Zbl 0747.76074
[9] Couzy, W.; Deville, M.O., A parallel spectral element method for the 3D navier – stokes equations, (), 40-43 · Zbl 0832.76068
[10] Byrde, O.; Couzy, W.; Deville, M.O.; Sawley, M.L., High-performance parallel computing for incompressible flow simulations, Comput mech, 23, 98-107, (1999) · Zbl 0949.76064
[11] Basu, A.J., Parallel algorithm for spectral solution of the three-dimensional navier – stokes equations, Parallel comput, 20, 1191-1204, (1994) · Zbl 0817.76054
[12] Israeli, M.; Vozovoi, L.; Averbuch, A., Spectral multidomain technique with local Fourier basis, J sci comput, 8, 2, 135-149, (1994) · Zbl 0784.76066
[13] Cortese, T.A.; Balachandar, S., High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory, Int J supercomput appl, 9, 3, 187-204, (1995)
[14] Jackson, E.; She, Z.-.S.; Orszag, S.A., A case study in parallel computing. I. homogenous turbulence on a hypercube, J sci comput, 6, 1, 27-45, (1991) · Zbl 0737.76056
[15] Yamamoto, K., Direct numerical simulation of isotropic turbulence using NAL numerical wind tunnel, (), 13-20
[16] Kawamura, H.; Ikai, K., Parallel computing of direct numerical simulation for a homogeneous turbulence, (), 93-100 · Zbl 0856.76061
[17] Mangiavacchi, N.; Coutinho, A.L.G.A.; Ebecken, N.F.F., Parallel pseudo-spectral simulations of nonlinear viscous fingering in miscible displacements, (), 497-506
[18] Hung, S.H.; Forsyth, D.W., Modelling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multidomain pseudo-spectral method, Geophys J int, 133, 726-740, (1998)
[19] Kindler, T.; Schwan, K.; Silva, D.; Trauner, M.; Alyea, F., Parallel spectral model for atmospheric transport processes, Concur prac exper, 8, 9, 639-666, (1996)
[20] Barros, S.R.M.; Kauranne, T., Parallelization of global spectral weather models, Parallel comput, 20, 1335-1356, (1994) · Zbl 0833.76052
[21] Gauthier, S., A spectral collocation method for two dimensional compressible convection, J comput phys, 75, 1, 217-235, (1988) · Zbl 0632.76105
[22] Gauthier, S., A semi-implicit collocation method: application to thermal convection in 2D compressible fluids, Int J numer meth fluids, 12, 985-1002, (1991) · Zbl 0724.76069
[23] Guillard, H.; Peyret, R., On the use of pseudo-spectral for the numerical solution of stiff problems, Comput meth appl mech engng, 66, 17-43, (1988) · Zbl 0652.65084
[24] Guillard, H.; Malé, J.-.M.; Peyret, R., Adaptive spectral methods with application to mixing layer computations, J comput phys, 102, 114-127, (1992) · Zbl 0759.76058
[25] Peyret, R., The Chebyshev multidomain approach in fluid dynamics, Comput meth appl mech engng, 80, 129-145, (1990) · Zbl 0722.76046
[26] Ehrenstein, U.; Guillard, H.; Peyret, R., Flame computations by a Chebyshev multidomain method, Int J numer meth fluids, 9, 499-515, (1989) · Zbl 0677.76074
[27] Renaud F. Une méthode spectrale de décomposition dynamique de domaines: applications aux écoulements compressibles de Rayleigh-Bénard et de Kelvin-Helmholtz. 1996, Thèse, Université de Nice–Sophia Antipolis
[28] Renaud, F.; Gauthier, S., A dynamical pseudo-spectral domain decomposition technique: application to viscous compressible flows, J comput phys, 131, 89-108, (1997) · Zbl 0873.76065
[29] Gauthier, S.; Guillard, H.; Lumpp, T.; Malé, J.M.; Peyret, R.; Renaud, F., A spectral domain decomposition technique with moving interfaces for viscous compressible flows, (), 839-844
[30] Fournier, E.; Gauthier, S., Parallelization of a 2D pseudo-spectral dynamical domain decomposition method for the full navier – stokes equations, (), 167-172
[31] Fournier E. Méthodes spectrales, méthodes de décomposition de domaines et parallélisme: applications aux instabilités de Rayleigh-Taylor. 1998, Thèse, Université de Paris VI
[32] Kull, H.J., Theory of the rayleigh – taylor instability, Phys rep, 206, 5, 197-325, (1991)
[33] Duff, R.E.; Harlow, F.H.; Hirt, C.W., Effects of diffusion on interface instability between gases, Phys fluids, 5, 4, 417-425, (1962) · Zbl 0111.23601
[34] Jourdan G, Houas L. editors. Proceedings of the Sixth International Workshop on The Physics of Compressible Turbulent Mixing, Marseille, France, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.