×

zbMATH — the first resource for mathematics

Efficient five-axis machining of free-form surfaces with constant scallop height tool paths. (English) Zbl 1059.68146
Summary: Generation of efficient tool paths is essential for the cost-effective machining of parts with complex free-form surfaces. A new method to generate constant scallop height tool paths for the efficient five-axis machining of free-form surfaces using flat-end mills is presented. The tool orientations along the tool paths are optimized to maximize material removal and avoid local gouging. The distances between adjacent tool paths are further optimized according to the specified scallop height constraint to maximize machining efficiency. The constant scallop height tool paths are generated successively across the design surface from the immediate previous tool path and its corresponding scallop curve. The scallop surface, an offset surface of the three-dimensional design surface based on the specified scallop height, is used to establish accurately the scallop curve with the constant scallop height. The present method was implemented and validated through the five-axis machining of a typical free-form surface. The results showed that the conventional isoparametric tool paths were over 36% longer in the total tool path length and less efficient than the constant scallop height tool paths generated by the present method.

MSC:
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207549308956883 · doi:10.1080/00207549308956883
[2] DOI: 10.1016/0010-4485(93)90033-K · Zbl 0776.65012 · doi:10.1016/0010-4485(93)90033-K
[3] Faux ID, Computational Geometry for Design and Manufacture (1979)
[4] DOI: 10.1016/S0010-4485(01)00136-1 · Zbl 05860918 · doi:10.1016/S0010-4485(01)00136-1
[5] DOI: 10.1016/S0010-4485(97)00002-X · Zbl 05472495 · doi:10.1016/S0010-4485(97)00002-X
[6] DOI: 10.1016/S0010-4485(98)00822-7 · Zbl 1035.68543 · doi:10.1016/S0010-4485(98)00822-7
[7] DOI: 10.1016/0010-4485(94)00021-5 · Zbl 0960.68730 · doi:10.1016/0010-4485(94)00021-5
[8] DOI: 10.1016/0010-4485(94)90040-X · Zbl 0803.68149 · doi:10.1016/0010-4485(94)90040-X
[9] DOI: 10.1115/1.2803642 · doi:10.1115/1.2803642
[10] DOI: 10.1016/S0010-4485(99)00052-4 · Zbl 1041.68534 · doi:10.1016/S0010-4485(99)00052-4
[11] DOI: 10.1007/BF01351282 · doi:10.1007/BF01351282
[12] DOI: 10.1115/1.2826244 · doi:10.1115/1.2826244
[13] DOI: 10.1115/1.2901938 · doi:10.1115/1.2901938
[14] DOI: 10.1007/s001700200019 · doi:10.1007/s001700200019
[15] DOI: 10.1115/1.3188728 · doi:10.1115/1.3188728
[16] DOI: 10.1007/s001700050033 · doi:10.1007/s001700050033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.