# zbMATH — the first resource for mathematics

Stability of a cubic functional equation on groups. (English) Zbl 1059.39023
The functional equation $f(3x+y)+f(3x-y)=3f(x+y)+3f(x-y)+48f(x)\tag{1}$ is considered for functions mapping an abelian group $$G$$ into a Banach space $$X$$. Since $$f(x)=cx^3$$ fulfils (1), the authors call it a {cubic functional equation} and any its solution the {cubic function}. The general solution of (1) is given. It is of the form $$f(x)=F(x,x)$$, where $$F:G\times G\to X$$ is such a function that $$F(\cdot,y)$$ is additive for any $$y\in G$$ and $$F(x,\cdot)$$ is quadratic for all $$x\in G$$. The generalized Hyers-Ulam-Rassias stability of the equation (1) is established. Namely, it is proved that if $\bigl\| f(3x+y)+f(3x-y)-3f(x+y)-3f(x-y)-48f(x)\bigr\| \leq \phi(x,y),\quad x,y\in G,$ where $$\phi:G\times G\to[0,\infty)$$ fulfils the conditions $\sum_{i=0}^{\infty}\frac{\phi(3^ix,0)}{27^i}<\infty\quad\text{and} \quad\lim\limits_{n\to\infty}\frac{\phi(3^nx,3^ny)}{27^n}=0,$ then the function $C(x)=\lim\limits_{n\to\infty}\frac{f(3^nx)}{27^n},\quad x\in G$ is the unique cubic function close to $$f$$, i.e. satisfying the inequality $\bigl\| f(x)-C(x)\bigr\| \leq \frac{1}{54}\sum_{i=0}^{\infty}\frac{\phi(3^ix,0)}{27^i}, \quad x\in G.$

##### MSC:
 39B82 Stability, separation, extension, and related topics for functional equations 39B52 Functional equations for functions with more general domains and/or ranges
Full Text: