# zbMATH — the first resource for mathematics

Height in splittings of hyperbolic groups. (English) Zbl 1059.20040
Let $$H$$ be a hyperbolic subgroup of the hyperbolic group $$G$$. Call the elements $$\{g_i\mid i=1,\dots,n\}$$ essentially distinct if $$Hg_i\neq Hg_j$$ whenever $$i\neq j$$. Conjugates of $$H$$ by essentially distinct elements are called essentially distinct conjugates. The height of an infinite subgroup $$H$$ in $$G$$ is $$n$$ if there is a collection of $$n$$ essentially distinct conjugates of $$H$$ such that the intersection of the collection is infinite and $$n$$ is maximal with respect to this property. Finite groups have height $$0$$ by definition.
The main result of R. Gitik, M. Mitra, E. Rips, and M. Sageev [Trans. Am. Math. Soc. 350, No. 1, 321-329 (1998; Zbl 0897.20030)] is the following: if $$H$$ is a quasiconvex subgroup of a hyperbolic group $$G$$, then $$H$$ has finite height. The paper under review proves the converse of that theorem for hyperbolic groups $$G$$ which split as $$G=G_1*_HG_2$$ or $$G=G_1*_H$$ with hyperbolic edge and vertex groups where the inclusions are quasi-isometric embeddings, giving an affirmative answer to a question of Swarup.
The main result states: Let $$G$$ be a hyperbolic group splitting over $$H$$ with hyperbolic edge and vertex groups; assume the inclusions of $$H$$ are quasi-isometric embeddings; then $$H$$ is of finite height in $$G$$ if and only if it is quasiconvex in $$G$$.
The paper includes details regarding consequences and questions related to the main theorem including malnormality, more general graphs of hyperbolic groups as well as more geometric applications.

##### MSC:
 20F67 Hyperbolic groups and nonpositively curved groups 20F65 Geometric group theory 20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations 57M05 Fundamental group, presentations, free differential calculus
Full Text:
##### References:
  Anderson J and Maskit B, Local connectivity of limit sets of Kleinian groups, preprint · Zbl 0869.30034  Alonso J, Brady T, Cooper D, Ferlini V, Lustig M, Mihalik M, Shapiro M and Short H, Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (eds) E Ghys, A Haefliger, A Verjovsky (1991) pp. 3–63 · Zbl 0849.20023  Bestvina M and Feighn M, A combination theorem for negatively curved groups,J. Diff. Geom. 35 (1992) 85–101 · Zbl 0724.57029  Bestvina M and Handel M, Train tracks and automorphisms of free groups,Ann. Math. 135 (1992) 1–51 · Zbl 0757.57004 · doi:10.2307/2946562  Bestvina M, Feighn M and Handel M, Laminations, trees and irreducible automorphisms of free groups,GAFA 7(2) (1997) 215–244 · Zbl 0884.57002 · doi:10.1007/PL00001618  Bestvina M, Feighn M and Handel M, The Tits’ alternative for Out(Fn) I: Dynamics of exponentially growing automorphisms, preprint · Zbl 0984.20025  Bestvina M, Feighn M and Handel M, The Tits’ alternative for Out(Fn) II: A Kolchin Theorem, preprint · Zbl 1139.20026  Bestvina M, Feighn M and Handel M, The Tits’ alternative for Out(Fn) III: Solvable subgroups, preprint · Zbl 1139.20026  Bestvina M, Geometric group theory problem list, M Bestvina’s home page: http:math.utah.edu  Bonahon F, Geodesic currents on negatively curved groups, in: Arboreal group theory (ed.) R C Alperin (Springer Verlag: MSRI Publ.) (1991) vol. 19, pp. 143–168 · Zbl 0772.57004  Bonahon F, Bouts de varietes hyperboliques de dimension 3,Ann. Math. 124 (1986) 71–158 · Zbl 0671.57008 · doi:10.2307/1971388  Bonahon F and Otal J P, Varietes hyperboliques a geodesiques arbitrairement courtes,Bull. LMS 20 (1988) 255–261 · Zbl 0648.53027  Brady N, Branched coverings of cubical complexes and subgroups of hyperbolic groups, preprint · Zbl 0940.20048  Canary R D, Epstein DBA and Green P, Notes on notes of Thurston, in: Analytical and geometric aspects of hyperbolic spaces (1987) (Conventry/Durham, 1984)Lond. Math. Soc. Lecture Notes Ser. III, pp. 3–92  Cannon J and Thurston W P, Group invariant Peano curves, preprint · Zbl 1136.57009  Coornaert M, Delzant T and Papadopoulos A, Geometrie et theorie des groupes,Lecture Notes in Math. (Springer Verlag) (1990) vol. 1441 · Zbl 0727.20018  Farb B, The extrinsic geometry of subgroups and the generalized word problem,Proc. LMS 68(3) (1994) 577–593 · Zbl 0816.20032  Farb B and Schwartz R E, Quasi-isometric rigidity of Hilbert modular groups, preprint · Zbl 0871.11035  Fathi A, Laudenbach M and Poenaru V, Travaux de Thurston sur les surfaces,Asterisque 66–67 (1979) 1–284  Floyd W J, Group completions and limit sets of Kleinian groups,Invent. Math. 57 (1980) 205–218 · Zbl 0428.20022 · doi:10.1007/BF01418926  Gersten S, Cohomological lower bounds on isoperimetric functions of groups, preprint · Zbl 0933.20026  Ghys E and de la Harpe P (eds), Sur les groupes hyperboliques d’apres Mikhael Gromov,Prog. Math. (Birkhauser, Boston, Ma.) (1990) vol. 83 · Zbl 0731.20025  Gitik R, Mitra M, Rips E and Sageev M, Widths of subgroups,Trans. AMS (Jan. 1997) 321–329 · Zbl 0897.20030  Gromov M, Hyperbolic groups, in: Essays in group theory, (ed.) Gersten (Springer Verlag: MSRI Publ.) (1985) vol. 8, 75–263  Gromov M, Asymptotic invariants of infinite groups, in: Geometric group theory vol. 2;Lond. Math. Soc. Lecture Notes (Cambridge University Press) (1993) 182 · Zbl 0841.20039  Hocking J G and Young G S,Topology (Addison Wesley) (1961)  Klarreich E, Semiconjugacies between Kleinian group actions on the Riemann sphere, Ph.D. Thesis (SUNY, Stonybrook) (1997) · Zbl 1011.30035  Lyndon R C and Schupp P E, Combinatorial group theory (Springer) (1977) · Zbl 0368.20023  Masur H, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential,Duke Math. J. 66 (1992) 387–442 · Zbl 0780.30032 · doi:10.1215/S0012-7094-92-06613-0  McMullen C, Iteration on Teichmuller space,Invent. Math. 9 (1990) 425–454 · Zbl 0695.57012 · doi:10.1007/BF01234427  McMullen C, Amenability Poincaré series and quasiconformal maps,Invent. Math. 97 (1989) 95–127 · Zbl 0672.30017 · doi:10.1007/BF01850656  Minsky Y N, On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds,J.A.M.S. 7 (1994) 539–588 · Zbl 0808.30027  Minsky Y N, Teichmuller geodesics and ends of 3-manifolds,Topology 35 (1992) 1–25  Minsky Y N, The classification of punctured torus groups, preprint · Zbl 0939.30034  Mitra M, Maps on boundaries of hyperbolic metric states, Ph.D. Thesis (U.C. Berkeley) (1997)  Mitra M, Cannon-Thurston maps for hyperbolic group extensions,Topology 137(3) (1998) 527–538 · Zbl 0907.20038 · doi:10.1016/S0040-9383(97)00036-0  Mitra M, Ending laminations for hyperbolic group extensions,GAFA 7(2) (1997) 379–402 · Zbl 0880.57001 · doi:10.1007/PL00001624  Mitra M, Cannon-Thurston maps for trees of hyperbolic metric spaces,J. Diff. Geom. 48(1) (1998) 135–164 · Zbl 0906.20023  Mitra M, On a theorem of Scott and Swamp,Proc. AMS 127(6) (1999) 1625–1631 · Zbl 0918.20028 · doi:10.1090/S0002-9939-99-04935-7  Mosher L, Hyperbolic extensions of groups,J. Pure Appl. Algebra 110(3) (1996) 305–314 · Zbl 0851.20037 · doi:10.1016/0022-4049(95)00081-X  Mosher L, A hyperbolic-by-hyperbolic hyperbolic group, to appear inProc. AMS 125(12) (1997) 3447–3455 · Zbl 0895.20028 · doi:10.1090/S0002-9939-97-04249-4  Paulin F, Outer automorphisms of hyperbolic groups and small actions on R-trees, in: Arboreal group theory (ed.) R C Alperin (MSRI Publ., Springer Verlag) (1991) vol. 19, pp.331–344  Rips E and Sela Z, Structure and rigidity in hyperbolic groups,GAFA 4(3) (1994) 337–371 · Zbl 0818.20042 · doi:10.1007/BF01896245  Scott P, There are no fake Seifert fibered spaces with infinite $$\pi$$1,Ann. Math. 117 (1983) 35–70 · Zbl 0516.57006 · doi:10.2307/2006970  Scott P, Compact submanifolds of 3-manifolds,J. L.M.S. 7(2) (1973) 246–250 · Zbl 0266.57001  Scott P, Subgroups of surface groups are almost geometric,J. L.M.S. 17 (1978) 555–65 · Zbl 0412.57006  Scott P and Wall C T C, Topological methods in group theory, homological group theory (ed.) C T C Wall,London Math. Soc. Lecture Notes Series (Cambridge Univ. Press) (1979) vol. 36 · Zbl 0423.20023  Scott P and Swamp G, Geometric finiteness of certain Kleinian groups,Proc. AMS 109 (1990) 765–768 · Zbl 0699.30040 · doi:10.1090/S0002-9939-1990-1013981-6  Sela Z, Structure and rigidity in (Gromov) hyperbolic groups and discrete subgroups in rank 1 Lie groups, preprint · Zbl 0884.20025  Short H, Quasiconvexity and a theorem of Howson’s group theory from a geometrical viewpoint (eds) E Ghys, A Haefliger and A Verjovsky (1991) · Zbl 0869.20023  Sullivan D, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stonybrook Conference,Ann. Math. Stud. (Princeton) (1981) vol. 97 · Zbl 0567.58015  Thurston W P, The geometry and topology of 3-manifolds (Princeton University Notes) (1980)  Thurston W P, Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, preprint  Thurston W P, On the geometry and dynamics of diffeomorphisms of surfaces,Bull. AMS 19 (1987) 417–431 · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.