zbMATH — the first resource for mathematics

Conformal \({\mathcal N}=0\) \(d=4\) gauge theories from AdS/CFT superstring duality? (English) Zbl 1058.81651
Summary: Non-supersymmetric \(d=4\) gauge theories which arise from superstring duality on a manifold \(\text{AdS}_5\times S_5/\mathbb{Z}_p\) are cataloged for a range \(2\leq p\leq 41\). A number have vanishing two-loop gauge \(\beta\)-function, a necessary but not sufficient condition to be a conformal field theory.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
Full Text: DOI arXiv
[1] Maldacena, J., Adv. theor. math. phys., 2, 231, (1998), hep-th/9711200
[2] Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M., Phys. lett. B, 428, 105, (1998), hep-th/9802109
[3] Witten, E., Adv. theor. math. phys., 2, 505, (1998), hep-th/9803131
[4] L. Susskind, E. Witten, hep-th/9805114.
[5] Mandelstam, S., Nucl. phys. B, 213, 149, (1983)
[6] P.H. Frampton, hep-th/9812117.
[7] Kachru, S.; Silverstein, E., Phys. rev. lett., 80, 4855, (1998), hep-th/9802183
[8] Ferrara, S.; Kehagias, A.; Partouche, H.; Zaffaroni, A., Phys. lett. B, 431, 42, (1998), hep-th/9804006
[9] Russo, J.R., Phys. lett. B, 435, 284, (1998), hep-th/9808117
[10] M. Schmaltz, hep-th/9805218.
[11] M. Berkooz, S.-J. Rey, hep-th/9807241.
[12] J. Distler, F. Zamaro, hep-th/9810206.
[13] Harvey, J.A., Phys. rev. D, 59, 026002, (1999), hep-th/9807213
[14] I.R. Klebanov, A.A. Tsyetlin, hep-th/9901101.
[15] Kakushadze, J., Phys. rev. D, 59, 045007, (1999), hep-th/9806091
[16] A.A. Tsyetlin, K. Zarembo, hep-th/9902095.
[17] Bershadsky, M.; Kakushadze, Z.; Vafa, C., Nucl. phys. B, 523, 59, (1998), hep-th/9803076
[18] Bershadsky, M.; Johansen, A., Nucl. phys. B, 536, 141, (1998), hep-th/9803249
[19] Lawrence, A.; Nekrasov, N.; Vafa, C., Nucl. phys. B, 533, 199, (1998), hep-th/9803015
[20] N. Nekrasaov, S.L. Shatashvili, hep-th/9902110.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.