×

Large-scale simulations of microstructural evolution in elastically stressed solids. (English) Zbl 1056.74057

Summary: We present a set of numerical methods for simulations of microstructural evolution in elastically stressed solids. We combine three powerful tools to achieve computational efficiency: the boundary integral method to provide excellent resolution, the fast multipole method to reduce computational cost, and the small-scale decomposition technique with a two-level time-stepping scheme to remove the stiffness from the time advance. Although we apply these methods to study the topic of our interest, the details of how they are implemented can be useful in many other situations. We extend the fast multipole method to calculate the anisotropic stress field in periodic two-dimensional domains and in doing so address issues associated with the conditional convergence of the summations. In addition, we introduce a new formula for the potential in periodically arranged two-dimensional cells in the absence of an applied field through a summation in physical space without using the Ewald sum. Furthermore, we implement a time-stepping scheme that enables us to speed up the calculation by an additional factor of 100 over a straightforward implementation of the small-scale decomposition technique. The computational complexity scales as the number of mesh points \(N\), and thus we are able to employ \(N\sim 500,000\) in a typical calculation.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akaiwa, N.; Meiron, D. I., Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth, Phys. Rev. E, 51, 5408 (1995)
[2] Akaiwa, N.; Meiron, D. I., Two-dimensional late-stage coarsening for nucleation and growth at high-area fractions, Phys. Rev. E, 54, R13 (1996)
[3] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1989) · Zbl 0703.68099
[4] Ardell, A. J.; Nicholson, R. B., On the modulated structure of aged ni-al alloys, Acta Metall., 14, 1295 (1966)
[5] Bacon, D. J.; Barnett, D. M.; Scattergood, R. O., Anisotropic continuum theory of lattice defects, Prog. Mater. Sci., 23, 51 (1979)
[6] Berman, C. L.; Greengard, L., A renormalization method for the evaluation of lattice sums, J. Math. Phys., 35, 6036 (1994) · Zbl 0819.65013
[7] Christiansen, D.; Perram, J. W.; Petersen, H. G., On the fast multipole method for computing the energy of periodic assemblies of charged and dipolar particles, J. Comput. Phys., 107, 403 (1993) · Zbl 0785.65002
[8] Lambert, C. G.; Darden, T. A.; Board, J. A., A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles, J. Comput. Phys., 126, 274 (1996) · Zbl 0869.65077
[9] Fratzl, P.; Penrose, O., Ising-model for phase-separation in alloys with anisotropic elastic interaction 1. theory, Acta Metall. Mater., 43, 2921 (1995)
[10] Greenbaum, A.; Greengard, L.; McFadden, G. B., Laplace’s equation and the dirichlet-neumann map in multiply connected domains, J. Comput. Phys., 105, 267 (1993) · Zbl 0769.65085
[11] Greengard, L.; Rokhlin, V., A fast algorithm for particle summations, J. Comput. Phys., 73, 325 (1987) · Zbl 0629.65005
[12] Leo, P. H.; Sekerka, R. F., The effect of surface stress on crystal-melt and crystal-crystal equilibrium, Acta. Metall., 37, 3119 (1989)
[13] Hou, T. Y.; Lowengrub, J. S.; Shelly, M. J., Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys., 114, 312 (1994) · Zbl 0810.76095
[14] Jou, H.-J.; Leo, P. H.; Lowengrub, J. S., Microstructural evolution in inhomogeneous elastic media, J. Comput. Phys., 131, 109 (1997) · Zbl 0880.73050
[15] Kudin, K. N.; Scuseria, G. E., A fast multipole method for periodic systems with arbitorary unit cell geometries, Chem. Phys. Lett., 283, 61 (1998)
[16] Lee, J. K., Computer simulation of the effect of coherency strain on cluster growth kinetics, Metall. Trans., 22A, 1197 (1991)
[17] Leo, P. H.; Lowengrub, J. S.; Jou, H.-J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater., 46, 2113 (1998)
[18] Leo, P. H.; Lowengrub, J. S.; Nie, Q., Microstructural evolution in orthotropic elastic media, J. Comput. Phys., 157, 44 (2000) · Zbl 0960.74076
[19] Lifshitz, I. M.; Slyozov, V. V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35 (1961)
[20] Marqusee, J. A., Dynamics of late stage phase separations in 2 dimensions, J. Chem. Phys., 81, 976 (1984)
[21] Marqusee, J. A.; Ross, J., Theory of ostwald ripening: Competitive growth and its dependence on volume fraction, J. Chem. Phys., 80, 536 (1984)
[22] McFadden, G. B.; Voorhees, P. W.; Boisvert, R. F.; Meiron, D. I., A boundary integral method for the simulation of two-dimensional particle coarsening, J. Sci. Comput., 1, 117 (1986) · Zbl 0649.65066
[23] Mura, T., Micromechanics of Defects in Solids (1987)
[24] Nishimori, H.; Onuki, A., Freezing of domain growth in cubic solids with elastic misfit, J. Phys. Soc. Jpn., 60, 1208 (1991)
[25] Saad, Y.; Schultz, M. H., Gmres: A generalized minimum residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856 (1986) · Zbl 0599.65018
[26] Schmidt, K. E.; Lee, M. A., Multipole ewald sums for the fast multipole method, J. Stat. Phys., 89, 411 (1997) · Zbl 0917.65101
[27] Smith, E. R., Electrostatic energy in ionic crystals, Proc. R. Soc. Lond. A, 375, 475 (1981) · Zbl 0491.73127
[28] Su, C. H.; Voorhees, P. W., The dynamics of precipitate evolution in elastically stressed solids part ii: Particle alignment, Acta Mater., 44, 2001 (1996)
[29] Miyazaki, T.; Koyama, T.; Mebed, A. E.A. M., Computer-simulations of phase-decomposition in real alloy systems based on the modified khachaturyan diffusion equation, Metall. Mater. Trans. A, 26, 2617 (1995)
[30] Thompson, M. E.; Su, C. S.; Voorhees, P. W., The equilibrium shape of a misfitting precipitate, Acta Metall. Mater., 42, 2107 (1994)
[31] Thompson, M. E.; Voorhees, P. W., Equilibrium particle morphologies in elastically stressed coherent solids, Acta Mater., 47, 983 (1999)
[32] K. Thornton, N. Akaiwa, and, P. W. Voorhees, A large-scale simulations of ostwald ripening in elastically stressed solids: I. development of micro structure, in preparation;, K. Thornton, N. Akaiwa, and, P. W. Voorhees, A large-scale simulations of ostwald ripening in elastically stressed solids: II. coarsening kinetics and particle size distribution, in preparation.; K. Thornton, N. Akaiwa, and, P. W. Voorhees, A large-scale simulations of ostwald ripening in elastically stressed solids: I. development of micro structure, in preparation;, K. Thornton, N. Akaiwa, and, P. W. Voorhees, A large-scale simulations of ostwald ripening in elastically stressed solids: II. coarsening kinetics and particle size distribution, in preparation. · Zbl 1056.74057
[33] Thornton, K.; Akaiwa, N.; Voorhees, P. W., The dynamics of late-stage phase separation in crystalline solids, Phys. Rev. Lett., 86, 1259 (2001)
[34] Voorhees, P. W.; McFadden, G. B.; Boisvert, R. F.; Meiron, D. I., Numerical simulation of morphological development during ostwald ripening, Acta Metall., 36, 207 (1988)
[35] Voorhees, P. W.; McFadden, G. B.; Johnson, W. C., On the morphological development of second-phase particles in elastically stressed solids, Acta Metall. Mater., 40, 2979 (1992)
[36] Wagner, C., Theorie der alterung von niederschlägen der umlösen (ostwald-reifung), Z. Elektrochem, 65, 581 (1961)
[37] Wang, Y.; Chen, L. Q.; Khachaturyan, A. G., Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap, Acta Metall. et Mater., 41, 279 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.