zbMATH — the first resource for mathematics

QED Hopf algebras on planar binary trees. (English) Zbl 1056.16026
QED is the quantum field theory describing the dynamics of interacting electrons and photons. The interaction is represented by Feynman diagrams. A. Connes and D. Kreimer [Commun. Math. Phys. 210, No. 1, 249-273 (2000; Zbl 1032.81026)] and D. Kreimer [Adv. Theor. Math. Phys. 2, No. 2, 303-334 (1998; Zbl 1041.81087)] discussed the renormalization procedure and group in terms of a commutative Hopf algebra on the set of Feynman diagrams labeled by some indices.
In the paper under review, the authors replace Feynman diagrams by planar binary trees, and describe renormalization in terms of various noncommutative (and noncocommutative) Hopf algebras, and various coactions. The coactions replace the characters in the Connes-Kreimer approach. The main tool is the smash coproduct of Hopf algebras.

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
81T17 Renormalization group methods applied to problems in quantum field theory
81T18 Feynman diagrams
81V10 Electromagnetic interaction; quantum electrodynamics
Full Text: DOI arXiv
[1] Brouder, Ch., On the trees of quantum fields, Eur. phys. J. C, 12, 535-549, (2000)
[2] Brouder, Ch.; Frabetti, A., Renormalization of QED with planar binary trees, Eur. phys. J. C, 19, 715-741, (2001) · Zbl 1099.81568
[3] Brouder, Ch.; Frabetti, A., Noncommutative renormalization of massless QED · Zbl 1099.81568
[4] Ch. Brouder, A. Frabetti, Noncommutative Hopf algebra of formal diffeomorphisms, in preparation
[5] Ch. Brouder, A. Frabetti, Groups of tree-expanded series, in preparation
[6] Butcher, J.C., An algebraic theory of integration methods, Math. comput., 26, 79-106, (1972) · Zbl 0258.65070
[7] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Comm. math. phys., 199, 1, 203-242, (1998) · Zbl 0932.16038
[8] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the riemann – hilbert problem I: the Hopf algebra structure of graphs and the main theorem, Comm. math. phys., 210, 1, 249-273, (2000) · Zbl 1032.81026
[9] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the riemann – hilbert problem II: the β function, diffeomorphisms and the renormalization group, Comm. math. phys., 216, 1, 215-241, (2001) · Zbl 1042.81059
[10] Dur, A., Möbius functions, incidence algebras and power series representations, (1986), Springer Berlin · Zbl 0592.05006
[11] Foissy, L., LES algèbres de Hopf des arbres enracinés décorés I, Bull. sci. math., LES algèbres de Hopf des arbres enracinés décorés II, Bull. sci. math., 126, 4, 249-288, (2002) · Zbl 1013.16027
[12] Girelli, F.; Krajewski, T.; Martinetti, P., The Hopf algebra of Connes and kreimer and wave function renormalization, Modern phys. lett. A, 16, 299-303, (2001)
[13] Grossman, R.; Larson, R.G., Hopf algebraic structure of families of trees, J. algebra, 126, 1, 184-210, (1989) · Zbl 0717.16029
[14] R. Holtkamp, Comparison of Hopf algebras on trees, Preprint (2001) · Zbl 1056.16030
[15] Kreimer, D., On the Hopf algebra structure of perturbative quantum field theory, Adv. theor. math. phys., 2, 303-334, (1998) · Zbl 1041.81087
[16] Itzykson, C.; Zuber, J.-B., Quantum field theory, (1980), McGraw-Hill New York · Zbl 0453.05035
[17] Lin, B., Crossed coproducts of Hopf algebras, Comm. algebra, 10, 1, 1-17, (1982) · Zbl 0478.16003
[18] J.-L. Loday, Arithmetree, Preprint, math.CO/0112034
[19] Loday, J.-L.; Ronco, M.O., Hopf algebra of the planar binary trees, Adv. math., 139, 293-309, (1998) · Zbl 0926.16032
[20] J.-L. Loday, M.O. Ronco, Order structure and the algebra of permutations and planar binary trees, J. Algebraic Combin., to appear · Zbl 0998.05013
[21] Majid, S., Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossed product, J. algebra, 130, 1, 17-64, (1990)
[22] Moerdijk, I., On the connes – kreimer construction of Hopf algebras, Contemp. math., 271, 311-321, (2001) · Zbl 0987.16032
[23] Molnar, R.K., Semi-direct products of Hopf algebras, J. algebra, 47, 29-51, (1977) · Zbl 0353.16004
[24] P. Palacios, Tesis de Licenciatura, Departamento de Matematicas, Buenos Aires University (2002)
[25] Panaite, F., Relating the connes – kreimer and the grassman – larson Hopf algebras on rooted trees, Lett. math. phys., 51, 3, 211-219, (2000) · Zbl 0959.16023
[26] Peskin, M.E.; Schroeder, D.V., An introduction to quantum field theory, (1995), Perseus Books Pub. L.L.C
[27] Radford, D., The structure of Hopf algebras with a projection, J. algebra, 92, 2, 322-347, (1985) · Zbl 0549.16003
[28] Ward, J.C., An identity in quantum electrodynamics, Phys. rev., 78, 182-184, (1950) · Zbl 0041.33012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.