Martínez Alonso, L.; Shabat, A. B. Towards a theory of differential constraints of a hydrodynamic hierarchy. (English) Zbl 1055.35092 J. Nonlinear Math. Phys. 10, No. 2, 229-242 (2003). The authors present a theory of compatible differential constraints of a hydrodynamic hierarchy of infinite dimensional systems. One of the main aims of the work is to show that the notion of differential constraint is useful in the theory of integrable systems. The authors consider differential constraints which are compatible with the whole hierarchy. Some new integrable models are presented. Reviewer: Mariano Rodriguez Ricard (La Habana) Cited in 1 ReviewCited in 16 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) Keywords:hierarchies; infinite dimensional systems; integrable systems; differential constraints PDF BibTeX XML Cite \textit{L. Martínez Alonso} and \textit{A. B. Shabat}, J. Nonlinear Math. Phys. 10, No. 2, 229--242 (2003; Zbl 1055.35092) Full Text: DOI References: [1] Rozdestvenskii B L, Comput. Math. & Math. Phys. 7 pp 1176– (1967) [2] Dubrovin B A, Usp. Mat. Nauk 31 (1) pp 55– (1976) [3] Mikhalev V G, Funct. Anal. Appl. 26 (2) pp 140– (1992) · Zbl 0790.58022 · doi:10.1007/BF01075282 [4] Hone A N W, Phys. Lett. 249 pp 46– (1998) · Zbl 1044.37531 · doi:10.1016/S0375-9601(98)00608-2 [5] Martinez Alonso L, Phys. Lett. 300 pp 58– (2002) · Zbl 0997.37045 · doi:10.1016/S0375-9601(02)00703-X [6] Liouville J, J. Math. Pures Appl. 20 pp 137– (1855) [7] Tsarev S P Tomographical Methods in Physical-Technical Measurements, WNIIFTRI, Moscow, (1985), 120–135 [8] Ferapontov E V, Phys. Lett. 158 pp 112– (1991) · doi:10.1016/0375-9601(91)90910-Z [9] Adler V E, Theor. Math. Phys. 129 (2) pp 163– (2001) · doi:10.1023/A:1012858820688 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.