×

zbMATH — the first resource for mathematics

Fractional differentiability of nowhere differentiable functions and dimensions. (English) Zbl 1055.26504
Summary: Weierstrass’s everywhere continuous but nowhere differentiable function is shown to be locally continuously fractionally differentiable everywhere for all orders below the “critical order” \(2-s\) and not so for orders between \(2-s\) and 1, where \(s,1<s<2\) is the box dimension of the graph of the function. This observation is consolidated in the general result showing a direct connection between local fractional differentiability and the box dimension/local Hölder exponent. Lévy index for one dimensional Lévy flights is shown to be the critical order of its characteristic function. Local fractional derivatives of multifractal signals (non-random functions) are shown to provide the local Hölder exponent. It is argued that local fractional derivatives provide a powerful tool to analyze pointwise behavior of irregular signals.

MSC:
26A33 Fractional derivatives and integrals
26A27 Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nonnenmacher T. F., J. Phys. A Math. Gen. 23 pp L697– (1990) · Zbl 0709.60546 · doi:10.1088/0305-4470/23/14/001
[2] Giona M., J. Phys. A Math Gen. 25 pp 2093– (1992) · Zbl 0755.60067 · doi:10.1088/0305-4470/25/8/023
[3] Roman H. E., J. Phys. A Math. Gen. 25 pp 2107– (1992) · Zbl 0755.60068 · doi:10.1088/0305-4470/25/8/024
[4] Patzschke N., Stochastic Process Appl. 43 pp 165– (1992) · Zbl 0767.60039 · doi:10.1016/0304-4149(92)90081-Z
[5] DOI: 10.1137/1010093 · Zbl 0179.47801 · doi:10.1137/1010093
[6] DOI: 10.1007/BF01058445 · Zbl 0945.82559 · doi:10.1007/BF01058445
[7] Schlesinger M. F., J. Stat. Phys. 36 pp 639– (1984) · Zbl 0587.60081 · doi:10.1007/BF01012928
[8] DOI: 10.1016/0167-2789(94)90254-2 · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[9] Abott L. F., Am. J. Phys. 49 pp 37– (1981) · doi:10.1119/1.12657
[10] Constantin P., Phys. Rev. Lett. 67 pp 1739– (1991) · doi:10.1103/PhysRevLett.67.1739
[11] DOI: 10.1088/0951-7715/7/3/014 · Zbl 0805.58035 · doi:10.1088/0951-7715/7/3/014
[12] Kaplan J. L., Ergodic Theory Dyn. Syst. 4 pp 261– (1984) · Zbl 0558.58018 · doi:10.1017/S0143385700002431
[13] Sarkar K., Phys. Rev. E 47 pp 957– (1993) · doi:10.1103/PhysRevE.47.957
[14] Hardy G. H., Trans. Am. Math. Soc. 17 pp 301– (1916)
[15] Besicovitch A. S., J. London Math. Soc. 12 pp 18– (1937)
[16] DOI: 10.1098/rspa.1980.0044 · Zbl 0435.28008 · doi:10.1098/rspa.1980.0044
[17] Shlesinger M. F., Physica D 38 pp 304– (1989) · doi:10.1016/0167-2789(89)90211-X
[18] Hilfer R., Phys. Scr. 44 pp 321– (1991) · doi:10.1088/0031-8949/44/4/002
[19] Hilfer R., Phys. Rev. Lett. 68 pp 190– (1992) · doi:10.1103/PhysRevLett.68.190
[20] Osler T. J., SIAM J. Math. Anal. 2 pp 37– (1971) · Zbl 0215.12101 · doi:10.1137/0502004
[21] Holschneider M., J. Stat. Phys. 77 pp 807– (1994) · Zbl 0870.42009 · doi:10.1007/BF02179462
[22] DOI: 10.1103/PhysRevLett.74.4823 · doi:10.1103/PhysRevLett.74.4823
[23] DOI: 10.1103/PhysRevE.47.875 · doi:10.1103/PhysRevE.47.875
[24] DOI: 10.1088/0305-4470/17/18/021 · doi:10.1088/0305-4470/17/18/021
[25] DOI: 10.1103/PhysRevA.33.1141 · Zbl 1184.37028 · doi:10.1103/PhysRevA.33.1141
[26] DOI: 10.1007/BF01206149 · Zbl 0683.58023 · doi:10.1007/BF01206149
[27] Jensen M. H., Phys. Rev. A 46 pp 1409– (1987) · Zbl 0925.58054 · doi:10.1103/PhysRevA.36.1409
[28] Mandelbrot B. B., Pure Appl. Geophys. 131 pp 5– (1989) · doi:10.1007/BF00874478
[29] DOI: 10.1016/0167-2789(93)90060-E · Zbl 0772.60093 · doi:10.1016/0167-2789(93)90060-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.