×

zbMATH — the first resource for mathematics

On the spatial formulation of anisotropic multiplicative elasto-plasticity. (English) Zbl 1054.74533
Summary: This contribution aims at a thermodynamically consistent and modular formulation of anisotropic multiplicative elasto-plasticity.
Embedded in the well-established framework of non-standard dissipative materials, we adopt as a key ingredient the introduction of additional symmetric arguments – typically structural tensors – into the relevant scalar-valued isotropic tensor functions. On this basis, the fundamental covariance relation leads us to a formulation which allows itself to be set up directly in terms of spatial arguments and thus guarantees a convenient implementation within a finite element setting.

MSC:
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E10 Anisotropy in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.S., Nonlinear problems of elasticity, () · Zbl 0989.74039
[2] Boehler, J.P., On irreducible representations for isotropic scalar functions, Z. angew. math. mech, 57, 323-327, (1977) · Zbl 0362.15019
[3] ()
[4] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, () · Zbl 0579.65058
[5] Desai, C.S.; Siriwardane, H.J.; Ekh, M.; Menzel, A.; Runesson, K.; Steinmann, P., Anisotropic damage with the MCR effect coupled to plasticity, Int. J. engrg. sci, 41, 1535-1551, (2003), Prentice-Hall · Zbl 1211.74019
[6] Engeln-Müllges, G.; Uhlig, F., Numerical algorithms with FORTRAN, (1996), Springer · Zbl 0857.65002
[7] Ericksen, J.L., Tensor fields, (), 794-858
[8] Eringen, A.C., Nonlinear theory of continuous media, Series in engineering science, (1962), McGraw-Hill
[9] Halphen, B.; Nguyen, Q.S., Sur LES matériaux standards généralisés, J. Mécanique, 14, 39-62, (1975) · Zbl 0308.73017
[10] Haupt, P., Continuum mechanics and theory of materials, Advanced texts in physics, (2000), Springer
[11] Hill, R., The mathematical theory of plasticity, (1950), Oxford University Press · Zbl 0041.10802
[12] Hill, R., Plastic anisotropy and the geometry of yield surfaces in stress space, J. mech. phys. solids, 48, 1093-1106, (2000) · Zbl 0984.74015
[13] Hull, D.; Clyne, T.W., An introduction to composite materials, Cambridge solid state science series, (1996), Cambridge University Press
[14] Ibrahimbegović, A., Equivalent spatial and material description of finite deformation elastoplasticity in principal axes, Int. J. solids struct, 31, 22, 3027-3040, (1994) · Zbl 0944.74522
[15] Kocks, U.F.; Tomé, C.N.; Wenk, H.-R., Texture and anisotropy–preferred orientations in polycrystals and their effect on material properties, (2000), Cambridge University Press · Zbl 0946.74002
[16] Lodge, A.S., Body tensor fields in continuum mechanics–with application to polymer rheology, (1974), Academic Press
[17] Lu, J.; Papadopoulos, P., A covariant constitutive description of anisotropic non-linear elasicity, Z. angew. math. phys, 51, 204-217, (2000) · Zbl 0969.74010
[18] Lubliner, J., Plasticity theory, (1990), MacMillan Publishing Company · Zbl 0745.73006
[19] Mandel, J., Thermodynamics and plasticity, (), 283-304
[20] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1994), Dover
[21] Maugin, G.A., Eshelby stress in elastoplasticity and ductile fracture, Int. J. plasticity, 10, 4, 393-408, (1994) · Zbl 0808.73026
[22] Menzel, A.; Ekh, M.; Steinmann, P.; Runesson, K., Anisotropic damage coupled to plasticity: modelling based on the effective configuration concept, Int. J. numer. methods engrg, 54, 1409-1430, (2002) · Zbl 1034.74004
[23] Menzel, A.; Steinmann, P., On the comparison of two strategies to formulate orthotropic hyperelasticity, J. elasticity, 62, 171-201, (2001) · Zbl 0992.74015
[24] Menzel, A.; Steinmann, P.; Menzel, A.; Steinmann, P., Geometrically non-linear anisotropic inelasticity based on fictitious configurations: application to the coupling of continuum damage and multiplicative elasto-plasticity, Int. J. solids struct, Int. J. numer. methods engrg, 56, 52, 2233-2266, (2003) · Zbl 1038.74512
[25] Menzel, A.; Steinmann, P., A view on anisotropic finite hyper-elasticity, Eur. J. mech. A/solids, 22, 71-87, (2003) · Zbl 1026.74013
[26] Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity, Comput. methods appl. mech. engrg, 134, 223-240, (1996) · Zbl 0892.73012
[27] Miehe, C., A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric, Comput. methods appl. mech. engrg, 159, 223-260, (1998) · Zbl 0948.74009
[28] Miehe, C.; Stein, E., A canonical model of multiplicative elasto-plasticity: formulation and aspects of the numerical implementation, Euro. J. mech. A/solids, 11, 25-43, (1992), (special issue)
[29] Mollica, F.; Srinivasa, A.R., A general framework for generating convex yield surfaces for anisotropic metals, Acta mech, 154, 61-84, (2002) · Zbl 1042.74007
[30] Murnaghan, F.D., Finite deformations of an elastic solid, Am. J. math, 59, 235-260, (1937) · JFM 63.0748.01
[31] Naghdi, P.M., A critical review of the state of finite plasticity, Z. angew. math. phys, 41, 315-394, (1990) · Zbl 0712.73032
[32] Oden, J.T., Finite elements of nonlinear continua, Advanced engineering series, (1972), McGraw-Hill · Zbl 0235.73038
[33] Pérez-Foguet, A.; Rodriguez-Ferran, A.; Huerta, A., Numerical differentiation for local and global tangent operators in computational plasticity, Comput. methods appl. mech. engrg, 189, 277-296, (2000) · Zbl 0961.74078
[34] Phillips, R., Crystals, defects and microstructures–modeling across scales, (2001), Cambridge University Press
[35] Post, E.J., Formal structure of electromagnetics, general covariance and electromagnetics, (1997), Dover · Zbl 0122.45003
[36] Sarma, G.; Zacharia, T., Integration algorithm for modeling the elastoviscoplastic response of polycrystalline materials, J. mech. phys. solids, 47, 1219-1238, (1999) · Zbl 0982.74016
[37] Šilhavý, M., The mechanics and thermomechanics of continuous media, Texts and monographs in physics, (1997), Springer
[38] Simo, J.C., Numerical analysis and simulation of plasticity, (), 183-499 · Zbl 0930.74001
[39] Simo, J.C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. numer. methods engrg, 33, 1413-1449, (1992) · Zbl 0768.73082
[40] Simo, J.C.; Miehe, C., Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. methods appl. mech. engrg, 98, 41-104, (1992) · Zbl 0764.73088
[41] Smith, G.F., On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. engrg. sci, 9, 899-916, (1971) · Zbl 0233.15021
[42] Spencer, A.J.M., Deformations of fibre-reinforced materials, (1972), Oxford University Press · Zbl 0238.73001
[43] Spencer, A.J.M., Constitutive theory of strongly anisotropic solids, () · Zbl 0588.73117
[44] Steinmann, P.; Miehe, C.; Stein, E., Fast transient dynamic plane stress analysis of orthotropic Hill-type solids at finite elastoplastic strains, Int. J. solids struct, 33, 1543-1562, (1996) · Zbl 0911.73030
[45] Svendsen, B., On the modeling of anisotropic elastic and inelastic material behaviour at large deformation, Int. J. solids struct, 38, 52, 9579-9599, (2001) · Zbl 1021.74008
[46] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (1992), Springer · Zbl 0779.73004
[47] Ch. Tsakmakis, Description of plastic anisotropy effects at large deformations. Part I: Restrictions imposed by the second law and the postulate of Il’iushin, Int. J. Plasticity, in press · Zbl 1145.74332
[48] Wang, C.C., A new representation theorem for isotropic functions: an answer to Professor G.F. smith’s criticism of my papers on representations for isotropic functions, part 1. scalar-valued isotropic functions, Arch. rational mech. anal, 36, 166-197, (1970), Corrigendum 43 (1971) 392-395 · Zbl 0327.15030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.