zbMATH — the first resource for mathematics

A computational approach to handle complex microstructure geometries. (English) Zbl 1054.74056
Summary: In multiscale analysis of components, there is usually a need to solve microstructures with complex geometries. In this paper, we use the extended finite element method (X-FEM) to solve scales involving complex geometries. The X-FEM allows one to use meshes not necessarily matching the physical surface of the problem while retaining the accuracy of the classical finite element approach. For material interfaces, this is achieved by introducing a new enrichment strategy. Although the mesh does not need to conform to the physical surfaces, it needs to be fine enough to capture the geometry of these surfaces. A simple algorithm is described to adaptively refine the mesh to meet this geometrical requirement. Numerical experiments on the periodic homogenization of two-phase complex cells demonstrate the accuracy and simplicity of the X-FEM.

74S05 Finite element methods applied to problems in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI
[1] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. meth. engrg., 45, 5, 601-620, (1999) · Zbl 0943.74061
[2] Belytschko, T.; Black, T.; Moës, N.; Sukumar, N.; Usui, S., Structured extended finite element methods of solids defined by implicit surfaces, Int. J. numer. meth. engrg., 56, 609-635, (2003) · Zbl 1038.74041
[3] Bensoussan, A.; Lions, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam · Zbl 0411.60078
[4] H.J. Bőhm, A short introduction to basic aspects of continuum micromechanics, Cdl-fmd Report 3-1998, TU Wien, Vienna, 1998. Available from <http://ilfb.tuwien.ac.at/links/mom_m.html>
[5] Chung, P.W.; Tamma, K.K.; Namburu, R.R., Asymptotic expansion homogenization for heterogeneous media: computational issues and applications, Compos. A, 32, 1291-1301, (2001)
[6] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. numer. meth. engrg., 48, 1741-1760, (2000) · Zbl 0989.74066
[7] Ghosh, S.; Lee, K.; Moorthy, S., Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method, Int. J. solids struct., 32, 1, 27-62, (1995) · Zbl 0865.73060
[8] Guedes, J.M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comp. methods appl. mech. engrg., 83, 143-198, (1990) · Zbl 0737.73008
[9] Hollister, S.J.; Kikuchi, N., Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue, Biotech. bioeng. 94, 43, 586-596, (1994)
[10] Kamiński, M., Boundary element method homogenization of the periodic linear elastic fiber composites, Engrg. anal. boundary elements, 23, 10, 815-823, (1999) · Zbl 0977.74072
[11] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comp. methods appl. mech. engrg., 39, 289-314, (1996) · Zbl 0881.65099
[12] Michel, J.C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comp. methods appl. mech. engrg., 172, 1-4, 109-143, (1999) · Zbl 0964.74054
[13] J.C. Michel, H. Moulinec, P. Suquet, Homogénéisation en mécanique des matériaux 1, Chapter Composites à microstructure périodique, Hermes Science, 2001, pp. 57-94
[14] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. meth. engrg., 46, 131-150, (1999) · Zbl 0955.74066
[15] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part I: mechanical model, Int. J. numer. meth. engrg., 53, 2549-2568, (2001) · Zbl 1169.74621
[16] Moës, N.; Oden, J.T.; Zhodi, T.I., Investigation of the interactions between the numerical and the modeling errors in the homogenized Dirichlet projection method, Comp. methods appl. mech. engrg., 159, 79-101, (1998) · Zbl 0952.74072
[17] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comp. methods appl. mech. engrg., 157, 69-94, (1997) · Zbl 0954.74079
[18] Okada, H.; Fukui, Y.; Kumazawa, N., Homogenization method for heterogeneous material based on boundary element method, Comp. struct., 79, 20-21, 1987-2007, (2001)
[19] J.-F. Remacle, C. Geuzaine, Gmsh finite element grid generator, 1998. Available from <www.geuz.org/gmsh>
[20] J.-F. Remacle, B. Kaan Karamete, M.S. Shephard, Algorithm oriented mesh database, in: Ninth International Meshing Roundtable, 2000
[21] J.-F. Remacle, B. Kaan Karamete, M.S. Shephard, AOMD: Algorithm Oriented Mesh Database, 2001. Available from <http://www.scorec.rpi.edu/AOMD>
[22] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, () · Zbl 0432.70002
[23] Sethian, J.A., Level set methods and fast marching methods:evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (1999), Cambridge University Press Cambridge, UK · Zbl 0973.76003
[24] Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method, Comp. methods appl. mech. engrg., 190, 6183-6200, (2001) · Zbl 1029.74049
[25] Suquet, P., Elements of homogenization for inelastic solid mechanics, (), 193-278
[26] Wentorf, R.; Collar, R.; Shepard, M.S.; Fish, J., Automated modeling for complex woven microstructures, Comp. methods appl. mech. engrg., 172, 1-4, 273-291, (1999) · Zbl 0957.74061
[27] Zohdi, T.; Feucht, M.; Gross, D.; Wriggers, P., A description of macroscopic damage through microstructural relaxation, Int. J. numer. meth. engrg., 143, 493-506, (1998) · Zbl 0948.74004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.