×

Two-mode clustering methods: a structured overview. (English) Zbl 1053.62078

Summary: We present a structured overview of methods for two-mode clustering, that is, methods that provide a simultaneous clustering of the rows and columns of a rectangular data matrix. Key structuring principles include the nature of row, column and data clusters and the type of model structure or associated loss function. We illustrate with analyses of symptom data on archetypal psychiatric patients.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P10 Applications of statistics to biology and medical sciences; meta analysis

Keywords:

classification
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bock H-H., Automatische Klassifikation (Clusteranalyse) (1974)
[2] Hartigan JA., Clustering algorithms (1975) · Zbl 0372.62040
[3] Arabie P, Clustering and classification (1996)
[4] Everitt BS, Cluster analysis (2001)
[5] Jain AK, Algorithms for clustering data (1988) · Zbl 0665.62061
[6] Celeux G, Classification automatique des données: environnement statistique et informatique (1989)
[7] Kaufman L, Finding groups in data: an introduction to cluster analysis (1990) · Zbl 1345.62009
[8] Mirkin BG., Mathematical classification and clustering (1996)
[9] Gordon AD., Classification (1999)
[10] Tryon RC., Cluster analysis (1939)
[11] Fisher W., Clustering and aggregation in economics (1969)
[12] Getz G, Proceedings of the National Academy of Sciences of the USA 97 (22) pp 12079– (2000)
[13] Li J, IEEE Computer Society Bioinformatics Conference (CSB’02)
[14] Pollard KS, Mathematical Biosciences 176 pp 99– (2002) · Zbl 0997.62090
[15] Pollard, KS, Nonlinear estimation and classification pp 305– (2002)
[16] Jörnsten R, Bioinformatics 19 pp 1100– (2003)
[17] Hartigan J., Journal of the American Statistical Association 67 pp 123– (1972)
[18] Both M, Methods of Operations Research 57 pp 593– (1987)
[19] Eckes T., Zeitschrift für Experimentelle und Angewandte Psychologie pp 201– (1991)
[20] Eckes T, Journal of Classification 10 pp 51– (1993) · Zbl 0775.62151
[21] Krolak-Schwerdt S., Between data science and applied data analysis: studies in classification, data analysis, and knowledge organization pp 270– (2003) · Zbl 05280182
[22] Mirkin B, Journal of Classification 12 pp 243– (1995) · Zbl 0850.62475
[23] Carroll JD, Annual Review of Psychology 31 pp 607– (1980)
[24] Tucker LR., Contributions to mathematical psychology pp 109– (1964)
[25] Frege G., Grundgesetze der Arithmetik, begrifflich abgeleitet, Band II (1903)
[26] Braverman EM., Automation and Remote Control 31 pp 123– (1970)
[27] Bock HH., G, eds (1996)
[28] Lambert JM, Journal of Ecology 50 pp 775– (1962)
[29] Williams WT, Nature 191 pp 202– (1961)
[30] Breiger RL, Journal of Mathematical Psychology 12 pp 328– (1975)
[31] Arabie P, Journal of Mathematical Psychology 17 pp 21– (1978) · Zbl 0375.92001
[32] Noma E, Psychological Bulletin 97 pp 583– (1985)
[33] Arabie P, Data, expert knowledge and decisions pp 215– (1988)
[34] Arabie P, Social Networks 12 pp 99– (1990)
[35] Arabie P, IEEE Transactions on Systems, Man, and Cybernetics 20 pp 268– (1991)
[36] Marcotorchino F., Journal of Applied Stochastical Models and Data Analysis 3 pp 73– (1987) · Zbl 0624.90048
[37] Govaert G., Data analysis and informatics 3 pp 223– (1984)
[38] Govaert G., Control and Cybernetics 24 pp 437– (1995)
[39] DeSarbo WS., Psychometrika 47 pp 449– (1982) · Zbl 0566.62057
[40] Gaul W, Data analysis and information systems pp 15– (1996)
[41] Baier D, Classification and knowledge organization pp 557– (1997)
[42] Vichi M., Advances in classification and data analysis. Studies in classification, data analysis, and knowledge organization pp 43– (2001)
[43] Trejos J, Classification and information at the turn of the millenium pp 135– (2000)
[44] Castillo W, Classification, clustering, and related topics. Recent advances and applications. Studies in classification, data analysis, and knowledge organization pp 43– (2002)
[45] Hansohm J., Classification, automation, and new media. Studies in classification, data analysis, and knowledge organization pp 87– (2002)
[46] Bock H-H., Analyse des données et informatique pp 187– (1979)
[47] Greenacre MJ., Journal of Classification 5 pp 39– (1988) · Zbl 0652.62053
[48] Bock H-H., Convexity-based clustering criteria: a new approach (2000)
[49] Bock H-H., Between data science and applied data analysis pp 143– (2003)
[50] Bock H-H., Statistical Methods and Applications 12 pp 293– (2003)
[51] Bock H-H., A clustering algorithm for choosing optimal classes for the chi-squared test (1983)
[52] Pötzelberger K, Statistics and Decisions 19 pp 331– (2001)
[53] Ciok A., Advances in data science and classification pp 349– (1998)
[54] DeSarbo WS, 27th Annual Meeting of the Gesellschaft für Klassifikation
[55] Govaert G, Pattern Recognition 36 pp 463– (2003) · Zbl 01972076
[56] Hartigan JA., Journal of Classification 17 pp 29– (2000) · Zbl 1103.91335
[57] Hartigan JA., Communications in Statistics 19 pp 2745– (1990) · Zbl 04500491
[58] Duffy DE, Journal of Classification 8 pp 65– (1991)
[59] De Soete G, Clustering and Classification pp 157– (1996)
[60] Tversky A., Psychological Review 84 pp 327– (1977)
[61] Eckes T, Classification, data analysis, and knowledge organization pp 3– (1991)
[62] Eckes T., Information and classification pp 510– (1993)
[63] Castillo W, Classification and information processing at the turn of the millennium pp 68– (2000)
[64] Lance GN, Computer Journal 9 pp 373– (1967)
[65] Schwaiger M., Classification and knowledge organization pp 597– (1997)
[66] Espejo E, Classification as a tool of research pp 121– (1986)
[67] De Soete G, Psychometrika 49 pp 289– (1984)
[68] Hubert LJ, British Journal of Mathematical and Statistical Psychology 48 pp 281– (1995) · Zbl 0858.62002
[69] Hartigan JA., Systematic Zoology 25 pp 149– (1976)
[70] Shepard RN, Psychological Review 86 pp 87– (1979)
[71] Carroll JD, Geometric representations of perceptual phenomena pp 295– (1995)
[72] Mickey MR, BMDP statistical software manual pp 538– (1983)
[73] De Boeck P, Psychometrika 53 pp 361– (1988) · Zbl 0718.62001
[74] Van Mechelen I, Mathematical hierarchies and biology pp 291– (1997)
[75] Van Mechelen I, Psychometrika 60 pp 505– (1995) · Zbl 0864.92021
[76] Leenen I, Journal of Classification 18 pp 57– (2001) · Zbl 1040.91086
[77] Barbut M, Ordre et classification (1970)
[78] Ganter B, Formal concept analysis: mathematical foundations (1999)
[79] Stahringer S, Information and Classification pp 85– (1993)
[80] Van Mechelen I., Information and classification pp 108– (1993)
[81] Mezzich JE, Taxonomy and behavioral science: comparative performance of grouping methods (1980)
[82] Gara M, Journal of Nervous and Mental Disease 180 pp 11– (1992)
[83] Ceulemans E., Between data science and applied data analysis pp 173– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.