zbMATH — the first resource for mathematics

Branes and \(N=2\) theories in two dimensions. (English) Zbl 1052.81625
Summary: Type IIA brane configurations are used to construct \(N=2\) supersymmetric gauge theories in two dimensions. Using localization of chiral multiplets in ten-dimensional space-time, supersymmetric non-linear sigma models with target space such as \(\mathbb{C} P^{n-1}\) and the Grassmann manifolds are studied in detail. The quantum properties of these models are realized in M-theory by taking the strong type IIA coupling limit. The brane picture implies an equivalence between the parameter space of \(N=2\) supersymmetric theories in two dimensions and the moduli space of vacua of \(N=2\) supersymmetric gauge theories in four dimensions. Effects like level-rank duality are interpreted in the brane picture as continuation past infinite coupling. The BPS solitons of the \(\mathbb{C} P^{n-1}\) model are identified as topological excitations of a membrane and their masses are computed. This provides the brane realization of higher rank tensor representations of the flavor group.

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. phys. B, 492, 152, (1997), hep-th/9611230 · Zbl 0996.58509
[2] de Boer, J.; Hori, K.; Ooguri, H.; Oz, Y.; Yin, Z., Mirror symmetry in three-dimensional gauge theories, SL(2, Z) and D-brane moduli space, Nucl. phys. B, 493, 148, (1997), hep-th/9612131 · Zbl 0973.14508
[3] E. Witten, Solutions of four-dimensional field theories via M-theory, hep-th/9703166. · Zbl 0934.81066
[4] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, hep-th/9704170. · Zbl 0979.81591
[5] I. Brunner and A. Karch, Branes and six-dimensional fixed points, hep-th/9705022. · Zbl 1035.81545
[6] B. Kol, 5d field theories and M-theory, hep-th/9705031.
[7] K. Landsteiner, E. Lopez and D.A. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, hep-th/9705199. · Zbl 0925.81097
[8] A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, M-theory and Seiberg-Witten curves: Orthogonal and symplectic groups, hep-th/9705232. · Zbl 0934.81050
[9] S. Elitzur, A. Giveon and D. Kutasov, Branes and N = 1 duality in string theory, hep-th/9702014. · Zbl 0925.81386
[10] J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three dimensions, hep-th/9702154. · Zbl 0935.81071
[11] H. Ooguri and C. Vafa, Geometry of N = 1 dualities in four dimensions, hep-th/9702180. · Zbl 0934.81045
[12] Barbon, J.L.F., Rotated branes and N = 1 duality, Phys. lett. B, 402, 59, (1997), hep-th/9703051
[13] N. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes, and duality of 4D gauge theories, hep-th/9703210. · Zbl 0925.81387
[14] C. Ahn and K. Oh, Geometry, D-branes and N = 1 duality in four dimensions I, hep-th/9704061.
[15] J.H. Brodie and A. Hanany, Type IIA superstrings, chiral symmetry, and N = 1 4D gauge theory dualities, hep-th/9704043. · Zbl 0925.81095
[16] A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, Brane configurations and 4D field theory dualities, hep-th/9704044. · Zbl 0939.81039
[17] S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici and A. Schwimmer, Brane dynamics and N = 1 supersymmetric gauge theory, hep-th/9704104. · Zbl 0925.81386
[18] R. Tatar, Dualities in 4D theories with product gauge groups from brane configurations, hep-th/9704198.
[19] C. Ahn, Geometry, D-branes and N = 1 duality in four dimensions II, hep-th/9705004.
[20] C. Ahn and R. Tatar, Geometry, D-branes and N = 1 duality in four dimensions with product gauge group, hep-th/9705106.
[21] A. Hanany and A. Zaffaroni, Chiral symmetry from Type IIA branes, hep-th/9706047. · Zbl 0949.81064
[22] K. Hori, H. Ooguri and Y. Oz, Strong coupling dynamics of four-dimensional N = 1 gauge theories from M-theory 5-brane, hep-th/9706082. · Zbl 0894.58076
[23] E. Witten, Branes and the dynamics of QCD, hep-th/9706109. · Zbl 0925.81388
[24] A. Brandhuber, N. Itzhaki, V. Kaplunovsky, J. Sonnenschein and S. Yankielowicz, Comments on the M-theory approach to N = 1 SQCD and brane dynamics, hep-th/9706127.
[25] C. Ahn, K. Oh and R. Tatar, Branes, geometry and N = 1 duality with product gauge groups of SO and Sp, hep-th/9707027. · Zbl 0933.81033
[26] Kachru, S.; Vafa, C., Exact results for N = 2 compactifications of heterotic strings, Nucl. phys. B, 450, 69, (1995) · Zbl 0957.14509
[27] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N., Self-dual strings and N = 2 supersymmetric field theory, Nucl. phys. B, 477, 746, (1996), hep-th/9604043 · Zbl 0925.81196
[28] Nachulich, S.G.; Schnitzer, H.J.; Nachulich, S.G.; Schnitzer, H.J., Duality between SU(N)k and SU(k)N WZW models, Phys. lett. B, Nucl. phys. B, 347, 687, (1990)
[29] Nakanishi, T.; Tsuchiya, A., Level rank duality of WZW models in conformal field theory, Commun. math. phys., 144, 351, (1992) · Zbl 0751.17024
[30] Witten, E., Instantons, the quark model, and the 1/N expansion, Nucl. phys. B, 149, 285, (1979)
[31] D’Adda, A.; DiVecchia, P.; Lüscher, M., Comfinement and chiral symmetry breaking in CP^n−1 models with quarks, Nucl. phys. B, 152, 125, (1979)
[32] Witten, E., Phases of N = 2 theories in two dimensions, Nucl. phys. B, 403, 159, (1993), hep-th/9301042 · Zbl 0910.14020
[33] Wess, J.; Bagger, J., Supersymmetry and supergravity, (1992), Princeton University Press Princeton
[34] Witten, E.; Olive, D., Supersymmetry algebras that include topological charges, Phys. lett. B, 78, 97, (1978)
[35] Haag, R.; Lopuszanski, J.T.; Sohnius, M., All possible generators of supersymmetries of the S-matrix, Nucl. phys. B, 88, 257, (1975)
[36] Fendley, P.; Mathur, S.D.; Vafa, C.; Warner, N.P., Integrable deformations and scattering matrices for the N = 2 supersymmetric discrete series, Phys. lett. B, 243, 257, (1990)
[37] Cecotti, S.; Vafa, C., On classification of N = 2 supersymmetric theories, Commun. math. phys., 158, 569, (1993), hep-th/9211097 · Zbl 0787.58049
[38] Cecotti, S.; Vafa, C., Ising model and N = 2 supersymmetric theories, Commun. math. phys., 157, 139, (1993), hep-th/9209085 · Zbl 0787.58008
[39] Lerche, W.; Vafa, C.; Warner, N.P., Chiral rings in N = 2 superconformal theories, Nucl. phys. B, 324, 427, (1989)
[40] ()
[41] Fendley, P.; Intriligator, K., Scattering and thermodynamics of integrable N = 2 theories, Nucl. phys. B, 380, 265, (1992), hep-th/9202011
[42] Eguchi, T.; Hori, K.; Xiong, C.S., Gravitational quantum cohomology, Int. J. mod. phys. A, 12, 1743, (1997), hep-th/9605225 · Zbl 1072.32500
[43] A.B. Givental, Equivariant Gromov-Witten invariants, alg-geom/9603021.
[44] O. Aharony, A. Hanany, K. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three dimensions, hep-th/9703110. · Zbl 0934.81063
[45] J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three dimensions, hep-th/9703100. · Zbl 0934.81065
[46] D’Adda, A.; Davis, A.C.; DiVecchia, P.; Salomonson, P., An effective action for the supersymmetric \(C\)P^n−1 model, Nucl. phys. B, 222, 45, (1983)
[47] Köberle, R.; Kurak, V., Solitons in the supersymmetric CP^N−1 model, Phys. rev. D, 36, 627, (1987)
[48] Abdalla, E.; Lima-Santos, A., Some features of CP^n−1 models with fermions, Phys. rev. D, 29, 1851, (1984)
[49] Cecotti, S.; Vafa, C., Exact results for supersymmetric sigma models, Phys. rev. lett., 68, 903, (1992), hep-th/9111016 · Zbl 0969.81634
[50] Evans, J.M.; Hollowood, T.J., The exact mass gap of the supersymmetric \(C\)P^n−1 sigma model, Phys. lett. B, 343, 198, (1995), hep-th/9409142
[51] Coleman, S., More about the massive Schwinger model, Ann. phys., 101, 239, (1976)
[52] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. phys. B, 431, 484, (1994), hep-th/9408099 · Zbl 1020.81911
[53] Veneziano, G.; Yankielowicz, S., An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. lett. B, 113, 231, (1982)
[54] G. Dvali and Shifman, Domain walls in strongly coupled theories, hep-th/9612128; A. Kovner, M. Shifman and A. Smilga, Domain walls in supersymmetric Yang-Mills theories, hep-th/9706089; B. Chibisov and M. Shifman, BPS-saturated walls in supersymmetric theories, hep-th/9706141.
[55] A. Smilga and A. Veselov, Complex BPS domain wals and phase transition in mass in supersymmetric · Zbl 1355.81155
[56] Seiberg, N.; Witten, E., Gauge dynamics and compactification to three dimensions, (), hep-th/9607163 · Zbl 1058.81717
[57] S. Katz and C. Vafa, Geometric engineering of N = 1 quantum field theories, hep-th/9611090.
[58] Witten, E., Constraints on supersymmetry breaking, Nucl. phys. B, 202, 253, (1982)
[59] E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104. · Zbl 0863.53054
[60] Blau, M.; Thompson, G., Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. phys. B, 408, 345, (1993), hep-th/930501 · Zbl 1043.58502
[61] P.K. Townsend, Four lectures on M-theory, hep-th/9612121.
[62] Witten, E., Some comments on string dynamics, (), hep-th/9507121 · Zbl 1003.81535
[63] Strominger, A., Open p-branes, Phys. lett. B, 383, 44, (1996), hep-th/9512059 · Zbl 0903.53053
[64] Witten, E., On the structure of the topological phase of two-dimensional gravity, Nucl. phys. B, 340, 281, (1990)
[65] Intriligator, K., Fusion residues, Mod. phys. lett. A, 6, 3543, (1991), hep-th/9108005 · Zbl 1020.81847
[66] Seiberg, N., Electric-magnetic duality in supersymmetric non-abelian gauge theories, Nucl. phys. B, 435, 129, (1995), hep-th/9411149 · Zbl 1020.81912
[67] C. Bachas, M.R. Douglas and M.B. Green, Anomalous creation of branes, hep-th/9705074. · Zbl 0949.81505
[68] U.H. Danielsson, G. Ferretti and I.R. Klebanov, Creation of fundamental strings by crossing D-branes, hep-th/9705084. · Zbl 0947.81551
[69] Becker, K.; Becker, M.; Strominger, A., Fivebranes, membranes and non-perturbative string theory, Nucl. phys. B, 456, 130, (1995), hep-th/9507158 · Zbl 0925.81161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.