×

zbMATH — the first resource for mathematics

Quantum cohomology of the Lagrangian Grassmannian. (English) Zbl 1051.53070
Let \(V\) be a symplectic vector space and \(LG\) the Lagrangian Grassmannian which parameterizes the maximal isotropic subspaces in \(V\). In the paper under review the author studies the quantum cohomology ring \(QH^*(LG)\) and proves that its multiplicative structure is determined by the ring of \(Q\)-polynomials.

MSC:
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] A. Astashkevich and V. Sadov : Quantum cohomology of partial flag manifolds \(F_{n_1,\ldots,n_k}\), Comm. Math. Phys. 170 (1995), no. 3, 503-528. · Zbl 0865.14027
[2] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand : Schubert cells and cohomology of the spaces \(G/P\), Russian Math. Surveys 28 (1973), no. 3, 1-26. · Zbl 0289.57024
[3] A. Bertram : Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289-305. · Zbl 0945.14031
[4] A. Bertram, I. Ciocan-Fontanine and W. Fulton : Quantum multiplication of Schur polynomials, J. Algebra 219 (1999), no. 2, 728-746. · Zbl 0936.05086
[5] B. Boe and H. Hiller : Pieri formula for \(SO_{2n+1}/U_n\) and \(Sp_n/U_n\), Adv. Math. 62 (1986), 49-67.
[6] A. Borel : Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. · Zbl 0052.40001
[7] L. Chen : Quantum cohomology of flag manifolds, Adv. Math. 174 (2003), no. 1, 1-34. · Zbl 1061.14061
[8] I. Ciocan-Fontanine : The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2695-2729. · Zbl 0920.14027
[9] I. Ciocan-Fontanine : On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485-524. · Zbl 0969.14039
[10] M. Demazure : Invariants symétriques des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. · Zbl 0269.22010
[11] M. Demazure : Désingularisation des variétés de Schubert généralisées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1974), 53-88. · Zbl 0312.14009
[12] S. Fomin, S. Gelfand and A. Postnikov : Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565-596. · Zbl 0912.14018
[13] W. Fulton : Intersection Theory, Second edition, Ergebnisse der Math. 2, Springer-Verlag, Berlin, 1998. · Zbl 0885.14002
[14] W. Fulton and R. Pandharipande : Notes on stable maps and quantum cohomology, in Algebraic Geometry (Santa Cruz, 1995), 45-96, Proc. Sympos. Pure Math. 62, Part 2, Amer. Math. Soc., Providence, 1997. · Zbl 0898.14018
[15] W. Fulton and P. Pragacz : Schubert varieties and degeneracy loci, Lecture Notes in Math. 1689, Springer-Verlag, Berlin, 1998. · Zbl 0913.14016
[16] A. Givental and B. Kim : Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609-641. · Zbl 0828.55004
[17] A. Grothendieck : Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 13 (1960/61), no. 221.
[18] A. Grothendieck : Techniques de construction en géométrie analytique V: Fibrés vectoriels, fibrés projectifs, fibrés en drapeaux, in Familles d’espaces complexes et fondements de la géométrie analytique, Séminaire Henri Cartan 13 (1960/61), exposé 12.
[19] R. Hartshorne : Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York, 1977. · Zbl 0367.14001
[20] G. Kempf and D. Laksov : The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. · Zbl 0295.14023
[21] B. Kim : Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices 1995, no. 1, 1-15. · Zbl 0849.14019
[22] B. Kim : On equivariant quantum cohomology, Internat. Math. Res. Notices 1996, no. 17, 841-851. · Zbl 0881.55007
[23] B. Kim : Quantum cohomology of flag manifolds \(G/B\) and quantum Toda lattices, Ann. of Math. (2) 149 (1999), 129-148. · Zbl 1054.14533
[24] B. Kim and R. Pandharipande : The connectedness of the moduli space of maps to homogeneous spaces, in Symplectic geometry and mirror symmetry (Seoul, 2000), 187-201, World Sci. Publ., River Edge, NJ, 2001. · Zbl 1076.14517
[25] M. Kontsevich, Y. Manin : Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525-562. · Zbl 0853.14020
[26] A. Kresch and H. Tamvakis : Double Schubert polynomials and degeneracy loci for the classical groups, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1681-1727. · Zbl 1059.14063
[27] A. Kresch and H. Tamvakis : Quantum cohomology of orthogonal Grassmannians, Compositio Math., to appear. · Zbl 1077.14083
[28] A. Lascoux, B. Leclerc and J.-Y. Thibon : Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l’unité, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1-6. · Zbl 0769.05095
[29] J. Li and G. Tian : The quantum cohomology of homogeneous varieties, J. Algebraic Geom. 6 (1997), 269-305. · Zbl 0909.14012
[30] A. Lascoux and P. Pragacz : Operator calculus for \(\widetilde{Q}\)-polynomials and Schubert polynomials, Adv. Math. 140 (1998), no. 1, 1-43. · Zbl 0951.14035
[31] I. G. Macdonald : Symmetric Functions and Hall Polynomials, Second edition, Clarendon Press, Oxford, 1995. · Zbl 0824.05059
[32] P. Pragacz : Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials, Séminare d’Algèbre Dubreil-Malliavin 1989-1990, Lecture Notes in Math. 1478, 130-191, Springer-Verlag, Berlin, 1991. · Zbl 0783.14031
[33] P. Pragacz and J. Ratajski : Formulas for Lagrangian and orthogonal degeneracy loci; \(\widetilde{Q}\)-polynomial approach, Compositio Math. 107 (1997), no. 1, 11-87. · Zbl 0916.14026
[34] J. Riordan : Combinatorial Identities, John Wiley & Sons, New York, 1968. · Zbl 0194.00502
[35] I. Schur : Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250. · JFM 42.0154.02
[36] B. Siebert and G. Tian : On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679-695. · Zbl 0974.14040
[37] J. R. Stembridge : Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), 87-134. · Zbl 0677.20012
[38] H. Tamvakis : Arakelov theory of the Lagrangian Grassmannian, J. Reine Angew. Math. 516 (1999), 207-223. · Zbl 0934.14018
[39] J. Thomsen : Irreducibility of \(\overline{M}_{0,n}(G/P,\beta)\), Internat. J. Math. 9, no. 3 (1998), 367-376. · Zbl 0934.14020
[40] C. Vafa : Topological mirrors and quantum rings, Essays on mirror manifolds, 96-119, Internat. Press, Hong Kong, 1992. · Zbl 0827.58073
[41] E. Witten : The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, 357-422, Conf. Proc. Lecture Notes Geom. Topology, IV, Internat. Press, Cambridge, MA, 1995. · Zbl 0863.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.