zbMATH — the first resource for mathematics

Radon and Fourier transforms for \(\mathcal D\)-modules. (English) Zbl 1051.32008
The authors generalize the result of J.-L. Brylinski [Astérisque 140–141, 3–134 (1986; Zbl 0624.32009)], in order to consider more general Radon transforms, to treat quasi-coherent \(\mathcal{D}\)-modules and twisted sheaves. First, they give a new proof of the fact that the natural morphism \(\mathcal{D}_{\mathbb{P}} (-m^*) \circ {}^{\mathcal{D}}\mathcal{R} \mathcal{D} \det \mathbb{V}\to \mathcal{D}_{p^* (-m)}\) is an isomorphism, proved by Brylinski (loc. cit.). Here \(\mathbb{V}\) is a vector space, \(\mathbb{P} = \mathbb{P}(\mathbb{V})\) is the projective space of lines in \(\mathbb{V}\), \((\circ)_{\cdot}^{\mathbb{D}} \mathcal{R}\) denotes the Radon transform associated with \(U \subset \mathbb{P} \times \mathbb{P}^*\) (\(U = \) the complement of \(\mathbb{S}\) in \(\mathbb{P} \times \mathbb{P}^*\), the hypersurface of pairs \((x, y) \) where \(x\) is a point belonging to the hyperplane \(y \in \mathbb{P}^*\)), \(m \in \mathbb{Z}\), \(m^* = -m - n - 1\), \(\mathcal{D}_{\mathbb{P}} (m) = \mathcal{D}_{\mathbb{P}} \otimes_{\mathcal{O}} (m)\) where \(\mathcal{O}_{\mathbb{P}} (\mathbb{P}^m)\) is the \(m\)-th tensor power of the topological line bundle \(\mathcal{O}_{\mathbb{P}}(-1)\) and \(n\) is the dimension of \(\mathbb{P}\). In fact, the authors prove more: they obtain a description of the Radon transform of \(\mathcal{D}_{\mathbb{P}}(-m^*)\) for \(\geq 0\), namely they show that there is a long exact sequence of \(\mathcal{D}_{\mathbb{P}^*}\)-modules \[ 0 \to \mathcal{O}_{\mathbb{P}^*} \otimes S^m \mathbb{V}^* \to \mathcal{D}_p (-m^*) \circ {}^{\mathbb{D}} \mathcal{D} \otimes \operatorname {der} \mathbb{V} \to \mathcal{D}_{\mathbb{P}^*}(-n) \to \mathcal{O}_{\mathbb{P}^*} \otimes S^m \mathbb{V}^* \] (here \(S^m \mathbb{V}\) is the \(m\)-th symmetric tensor of \(\mathbb{V}\)). For differential forms, let \(\mathcal{S}_{p.}^{\mathbb{D}}\) be the Spencer complex; the shifted complex \(\mathcal{S}_{p \geq q}^{\mathbb{P}}[q]\) describes the sheaf of closed \(q\)-forms. Then (theorem 7) one has the isomorphism \(\mathcal{S}_p^{\mathbb{P}} [q]^{\mathbb{P}} \circ \mathcal{R}\mathop{\sim}\limits_{\leftarrow} \mathcal{S}p^{\mathbb{P}^*}_{p\geq n - q} [n - q]\). This result is obtained by relating (theorem 8) the Radon transform of the sheaf of \(q\)-forms with the subsheaf of \(j^{-1} \Omega_{\mathbb{V}^*}^{n + 1 - q}\) of sections \(\sigma\) satisfying \(l_\theta \sigma = d \sigma = 0\) where \(j : \mathbb{V}\backslash \{0\} @>j>> \mathbb{V}\) and \(\theta\) is the Euler vector field.
The proofs are entirely geometric and consist mainly of a reduction to the one-dimensional case, by the use homogeneous coordinates. Finally the authors give a quantization [in the sense of A. D’Agnolo and P. Schapira, Duke Math. J. 84, No. 2, 453–496 (1996; Zbl 0879.32011)] of the Radon transform for differential forms.

32C38 Sheaves of differential operators and their modules, \(D\)-modules
58J10 Differential complexes
Full Text: DOI
[1] A. Beilinson, J. Bernstein, A proof of Jantzen conjectures, in: S.I. Gelfand, S.G. Gindikin (Eds.), I.M. Gelfand Seminar, Advances in Soviet Mathematics, Vol. 16 (Part 1), American Mathematical Society, Providence, RI, 1993, pp. 1-50. · Zbl 0790.22007
[2] J. Bernstein, Lectures on Algebraic \(D\)-modules at Berkeley, 2001.
[3] A. Borel, Algebraic \(D\)-modules, in: Perspectives in Mathematics, Vol. 2, Academic Press, New York, 1987.
[4] Brylinski, J.-L., Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales, astérisque, 140-141, 3-134, (1986)
[5] A. D’Agnolo, C. Marastoni, A topological obstruction for the real Radon transform, in: M. Picardello (Ed.), Harmonic Analysis and Integral Geometry (Safi, 1998), CRC Research: Notes in Mathematics, Vol. 422, Chapman & Hall, London, 2001, pp. 127-133.
[6] A. D’Agnolo, P. Polesello, Quantization of twisted projective duality, in preparation.
[7] D’Agnolo, A.; Schapira, P., Leray’s quantization of projective duality, Duke math. J., 84, 2, 453-496, (1996) · Zbl 0879.32011
[8] Eastwood, M.G., A duality for homogeneous vector bundles on twistor space, J. London math. soc., 31, 349-356, (1985) · Zbl 0534.14008
[9] Frot, J.-L., Correspondance d’andreotti-norguet et \(D\)-modules, Publ. res. inst. math. sci., 35, 4, 637-677, (1999) · Zbl 0972.32006
[10] M. Kashiwara, Algebraic study of systems of partial differential equations, Mém. Soc. Math. France (N.S.) 63 (1995) xiv+72; Kashiwara’s Master’s Thesis, Tokyo University, 1970 (A. D’Agnolo, J.-P. Schneiders, Transl. from Japanese).
[11] Kashiwara, M., Representation theory and \(D\)-modules on flag varieties, Orbites unipotentes et représentations, III, astérisque, 173-174, 9, 55-109, (1989)
[12] M. Kashiwara, \(D\)-modules and microlocal calculus (translated from the 2000 Japanese original by M. Saito), Transl. of Math. Monographs 217 AMS (2003).
[13] M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, Vol. 292, Springer, Berlin, 1990. · Zbl 0709.18001
[14] Kashiwara, M.; Schapira, P., Integral transforms with exponential kernels and Laplace transform, J. amer. math. soc., 10, 939-972, (1997) · Zbl 0888.32004
[15] Kashiwara, M.; Tanisaki, T., Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. nonintegral case, Duke math. J., 84, 3, 771-813, (1996) · Zbl 0929.17027
[16] Katz, N.M.; Laumon, G., Transformation de Fourier et majoration de sommes exponentielles, Inst. hautes études sci. publ. math., 62, 361-418, (1985) · Zbl 0603.14015
[17] M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudo-differential equations, in: H. Komatsu (Ed.), Hyperfunctions and Pseudo-differential Equations (Katata, 1971), Lecture Notes in Mathematics, Vol. 287, Springer, New York, 1973, pp. 265-529. · Zbl 0277.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.