×

zbMATH — the first resource for mathematics

Stability of nonabelian black holes and catastrophe theory. (English) Zbl 1050.83509
Summary: Two types of self-gravitating particle solutions found in several theories with non-Abelian fields are smoothly connected by a family of nontrivial black holes. There exists a maximum point of the black hole entropy where the stability of solutions changes. This criterion is universal, and the changes in stability follow from a catastrophe-theoretic analysis of the potential function defined by black hole entropy.

MSC:
83C57 Black holes
58K35 Catastrophe theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] R. Bartnik, Phys. Rev. Lett. 61 pp 141– (1988)
[2] M.S. Volkov, JETP Lett. 50 pp 346– (1989)
[3] , Sov. J. Nucl. Phys. 51 pp 747– (1990)
[4] P. Bizon, Phys. Rev. Lett. 64 pp 2844– (1990) · Zbl 1050.83506
[5] H.P. Künzle, J. Math. Phys. 31 pp 928– (1990) · Zbl 0701.53091
[6] T.H.R. Skyrme, Proc. R. Soc. London 260 pp 127– (1961) · Zbl 0102.22605
[7] T.H.R. Skyrme, J. Math. Phys. 12 pp 1735– (1971)
[8] S. Droz, Phys. Lett. B 268 pp 371– (1991)
[9] P. Bizon, Phys. Lett. B 297 pp 55– (1992)
[10] H.C. Luckock, Phys. Lett. B 176 pp 341– (1986)
[11] H.C. Luckock, in: String Theory and Quantum Gravity (1987)
[12] T. Torii, Phys. Rev. D 48 pp 1643– (1993)
[13] G. ’t Hooft, Nucl. Phys. B79 pp 276– (1974)
[14] A.M. Polyakov, JETP Lett. 20 pp 194– (1974)
[15] K. Y. Lee, Phys. Rev. Lett. 68 pp 1100– (1992) · Zbl 0969.83516
[16] K. Y. Lee, Phys. Rev. D 45 pp 2751– (1992) · Zbl 1232.81033
[17] M.E. Ortiz, Phys. Rev. D 45 pp R2586– (1992) · Zbl 1232.81036
[18] P. Breitenlohner, Nucl. Phys. B383 pp 357– (1992)
[19] P.C. Aichelburg, Phys. Rev. D 48 pp 607– (1993)
[20] B.R. Greene, Phys. Rev. D 47 pp 2242– (1993)
[21] R. Dashen, Phys. Rev. D 10 pp 4138– (1974)
[22] N.S. Manton, Phys. Rev. D 28 pp 2019– (1983)
[23] F.R. Klinkhamer, Phys. Rev. D 30 pp 2212– (1984)
[24] D.V. Galt’sov, Phys. Lett. A 162 pp 144– (1992)
[25] N. Straumann, Phys. Lett. B 243 pp 33– (1990)
[26] Z. H. Zhou, Nucl. Phys. B360 pp 180– (1991)
[27] M. Heusler, Helv. Phys. Acta 66 pp 614– (1993)
[28] P. Bizon, Phys. Lett. B 267 pp 173– (1991)
[29] M. Heusler, Phys. Lett. B 271 pp 61– (1991)
[30] J.M.T. Thompson, Philos. Trans. R. Soc. London 292 pp 1– (1979) · Zbl 0415.73051
[31] F.V. Kusmartsev, Phys. Rev. D 43 pp 3895– (1991)
[32] O. Kaburaki, Phys. Rev. D 47 pp 2234– (1993)
[33] J. Katz, Classical Quantum Gravity 10 pp 1323– (1993)
[34] T. Akiba, Phys. Rev. D 40 pp 588– (1989)
[35] D. Sudarsky, Phys. Rev. D 46 pp 1453– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.