×

zbMATH — the first resource for mathematics

Recovering the passive properties of tapered dendrites from single and dual potential recordings. (English) Zbl 1049.92007
Summary: We demonstrate that measurement of the membrane potential at one or more sites on a branched and tapered neuron following a known transient injection of subthreshold somatic current uniquely determines the cell’s passive electrical properties. That is, knowledge of the potentials allows recovery of the cell’s axial resistance, membrane capacitance, membrane conductance and soma conductance. The argument underlying uniqueness leads immediately to a constructive, robust algorithm that we successfully test on synthetic data. The robustness stems from the fact that the algorithm requires only a few weighted integrals, or moments, of the measured potentials.

MSC:
92C20 Neural biology
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
Software:
ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jaeger, D., Accurate reconstruction of neuronal morphology, (), 159
[2] Holmes, W.R.; Segev, I.; Rall, W., Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures, J. neurophys., 68, 1401, (1992)
[3] Holmes, W.R.; Rall, W., Electrotonic length estimates in neurons with dendritic tapering or somatic shunt, J. neurophys., 68, 1421, (1992)
[4] Holmes, W.R.; Rall, W., Estimating the electrotonic structure of neurons with compartmental models, J. neurophys., 68, 1438, (1992)
[5] Rall, W.; Burke, R.E.; Holmes, W.R.; Jack, J.J.B.; Redman, S.J.; Segev, I., Matching dendritic neuron models to experimental data, Physiol. rev., 172, S159, (1992)
[6] Vanier, M.C.; Bower, J.M., A comparative survey of automated parameter search methods for compartmental neural models, J. comput. neurosci., 7, 2, 149, (1999)
[7] Tabak, J.; Murphey, C.R.; Moore, L.E., Parameter estimation methods for single neuron models, J. comput. neurosci., 9, 215, (2000)
[8] Roth, A.; Hausser, M., Compartmental models of rat cerebellar purkinje cells based on simultaneous soma tic and dendritic patch-clamp recordings, J. physiol. (lond.), 535, 2, 445, (2001)
[9] Cox, S.J., A new method for extracting cable parameters from input impedance data, Math. biosci., 153, 1, (1998) · Zbl 0928.92002
[10] Cox, S.J.; Ji, L., Identification of the cable parameters in the somatic shunt model, Biol. cybernet., 83, 151, (2000) · Zbl 0956.92009
[11] Cox, S.J.; Ji, L., Discerning ionic currents and their kinetics from input impedance data, Bull. math. biol., 63, 5, 909, (2001) · Zbl 1323.92093
[12] Cox, S.J.; Griffith, B.E., Recovering quasi-active properties of dendritic neurons from dual potential recordings, J. comp. neurosci., 11, 95, (2001)
[13] Engelhardt, J.K; Morales, F.R.; Chase, M.H., An alternative method for the analysis of neuron passive electrical data which uses integrals of voltage transients, J. neurosci. methods, 81, 131, (1998)
[14] Eisenberg, R.S.; Mathias, R.T., Structural analysis of electrical properties of cells and tissues, CRC critical rev. bioeng., 4, 203, (1980)
[15] Adrian, R.H.; Almers, W., Membrane capacity measurements on frog skeletal muscle in media of low ion content, J. physiol., 337, 573, (1974)
[16] Jack, J.J.B.; Noble, D.; Tsien, R.W., Electrical current flow in excitable cells, (1975), Clarendon Oxford
[17] Rall, W., Core conductor theory and cable properties of neurons, (), 39
[18] Rall, W., Cable theory for dendritic neurons, (), 9
[19] Rall, W.; Agmon-Snir, H., Cable theory for dendritic neurons, (), 27
[20] Agmon-Snir, H., A novel theoretical approach to the analysis of dendritic transients, Biophys. J., 69, 1633, (1995)
[21] Strang, G.; Fix, G., An analysis of the finite element method, (1997), Wellesley-Cambridge · Zbl 0278.65116
[22] Rall, W., Theory of physiological properties of dendrites, Ann, NY acad. sci., 96, 1071, (1962)
[23] Tuckwell, H.C., Introduction to theoretical neurobiology, vol. I, linear cable theory and dendritic structure, (1988), Cambridge University Cambridge · Zbl 0647.92008
[24] Walter, J., Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 133, 301, (1973) · Zbl 0246.47058
[25] von Below, J., Sturm – liouville eigenvalue problems on networks, Math. methods appl. sci., 10, 383, (1988) · Zbl 0652.34025
[26] Lehoucq, R.B.; Sorensen, D.C.; Yang, C., ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, (1998), SIAM Publications Philadelphia, PA · Zbl 0901.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.