×

zbMATH — the first resource for mathematics

Computing Floquet multipliers for functional differential equations. (English) Zbl 1048.65126

MSC:
65P30 Numerical bifurcation problems
37M20 Computational methods for bifurcation problems in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34K13 Periodic solutions to functional-differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
34K20 Stability theory of functional-differential equations
34K18 Bifurcation theory of functional-differential equations
Software:
COLNEW; COLSYS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1145/355945.355950 · Zbl 0455.65067 · doi:10.1145/355945.355950
[2] Ascher U. M., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988) · Zbl 0671.65063
[3] DOI: 10.1137/0908047 · Zbl 0633.65084 · doi:10.1137/0908047
[4] DOI: 10.1111/j.1749-6632.1987.tb48740.x · doi:10.1111/j.1749-6632.1987.tb48740.x
[5] DOI: 10.1007/BF01445156 · Zbl 0694.34050 · doi:10.1007/BF01445156
[6] DOI: 10.1007/978-1-4613-8159-4 · doi:10.1007/978-1-4613-8159-4
[7] DOI: 10.1090/S0002-9939-96-03437-5 · Zbl 0844.34075 · doi:10.1090/S0002-9939-96-03437-5
[8] Davis P. J., Methods of Numerical Integration (1975) · Zbl 0304.65016
[9] DOI: 10.1090/S0025-5718-1980-0572849-1 · doi:10.1090/S0025-5718-1980-0572849-1
[10] DOI: 10.1090/S0025-5718-1981-0595038-4 · doi:10.1090/S0025-5718-1981-0595038-4
[11] DOI: 10.1007/BF00275858 · Zbl 0547.92015 · doi:10.1007/BF00275858
[12] Doedel E. J., Congr. Numer. 34 pp 225–
[13] DOI: 10.1137/S1064827599363381 · Zbl 0981.65082 · doi:10.1137/S1064827599363381
[14] DOI: 10.1007/s002110100313 · Zbl 1002.65089 · doi:10.1007/s002110100313
[15] Glass L., Science 197 pp 287–
[16] DOI: 10.1007/BF01403681 · Zbl 0419.34070 · doi:10.1007/BF01403681
[17] DOI: 10.1016/0021-9991(88)90164-7 · Zbl 0644.65050 · doi:10.1016/0021-9991(88)90164-7
[18] Hale J. K., Applied Mathematical Science 3, in: Theory of Functional Differential Equations (1997) · Zbl 1092.34500
[19] DOI: 10.1006/jdeq.1996.3238 · Zbl 0877.34045 · doi:10.1006/jdeq.1996.3238
[20] F. Hartung and J. Turi, Dynamical Systems and Differential Equations, eds. J. Du and S. Hu (2001) pp. 416–425. · Zbl 1301.34090
[21] DOI: 10.1016/0022-247X(74)90162-0 · Zbl 0293.34102 · doi:10.1016/0022-247X(74)90162-0
[22] DOI: 10.1142/S0218127497001709 · Zbl 0910.34057 · doi:10.1142/S0218127497001709
[23] DOI: 10.1142/S0218127401002407 · Zbl 1090.65551 · doi:10.1142/S0218127401002407
[24] DOI: 10.1007/BF00418497 · Zbl 0763.34056 · doi:10.1007/BF00418497
[25] Mallet-Paret J., J. Reine Angew. Math. 477 pp 129–
[26] R. D. Nussbaum, Functional Differential Equations and Approximation of Fixed Points, eds. H.O. Peitgen and H.O. Walther (Springer-Verlag, 1978) pp. 283–325.
[27] DOI: 10.1137/0715004 · Zbl 0384.65038 · doi:10.1137/0715004
[28] Walther H.-O., J. Diff. Eqns. 39 pp 369–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.