zbMATH — the first resource for mathematics

Bifurcation and chaos in discrete FitzHugh-Nagumo system. (English) Zbl 1048.37526
Summary: The discrete FitzHugh–Nagumo system obtained by the Euler method is investigated. Conditions of existence for fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory, chaotic behavior in the sense of Marotto’s definition of chaos is proved. And numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including attracting invariant circle, period-3, period-6, period-7, period-9, period-15, period-20, period-21, and period-\(n\) orbits, an inverse cascade of period-doubling bifurcation in period-3, cascade of period-doubling bifurcation in periods-9, 15, 20 and 21, interior and exterior crisis phenomena, intermittency mechanic, transient chaos in period-window, attracting and non-attracting chaotic attractors. The computations of Lyapunov exponents confirm the chaotic behaviors.

37N25 Dynamical systems in biology
37G10 Bifurcations of singular points in dynamical systems
92C20 Neural biology
Full Text: DOI
[1] Beltrami, E., Mathematics for dynamic modeling, (1997), Springer-Verleg
[2] Braaksma, B.; Grasman, J., Critical dynamics of the bonhoeffer – van der Pol equation and its chaotic response to periodic stimulation, Physica D, 68, 265-280, (1993) · Zbl 0779.34032
[3] Brown, D.; Foweraker, J.P.A.; Marrs, R.W., Dynamic equilibria and oscillations of a periodically stimulated excitable system, Chaos, solitions & fractals, 5, 3/4, 359-369, (1995) · Zbl 0925.92040
[4] Doedel EJ, Fairgrient FT, Wang X. AUTO 97 Continuation and bifurcation software for ordinary differential equation, 1997
[5] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466, (1961)
[6] Flores, G., Stability analysis for the slow traveling pulse of the fitzhugh – nagumo system, SIAM. J. math. anal., 22, 2, 392-399, (1991) · Zbl 0716.34057
[7] Freitas, P.; Rocha, C., Lyapunov functional and stability for fitzhugh – nagumo systems, J. different. equat., 169, 208-227, (2001) · Zbl 0974.35051
[8] Guckenheimer, J.; Holmes, Nonlinaer oscillations, dynamical systems and bifurcations of vector fields, (1983), Springer-Verlag New York · Zbl 0515.34001
[9] Hale, J.K.; Kocak, H., Dynamics and bifurcations, (1991), Springer-Verlag · Zbl 0745.58002
[10] Hassard, B.D., Bifurcation of periodic solutions of the hodgkin – huxley model for the squid giant axon, J. theoret. biol., 71, 401-420, (1978)
[11] Hayashi, M., A note on the uniqueness of the closed orbit of the fithhugh – nagumo system, Quart. appl. math., LViii, 1, 171-176, (2000) · Zbl 1043.34028
[12] Hayashi, M., Non-existence of homoclinic orbits and global asymptotic stability of fitzhugh – nagumo system, Vietnam J. math., 27, 4, 335-343, (1999) · Zbl 0963.34032
[13] Hayashi, M., On the uniqueness of the closed orbit of fitzhugh – nagumo system, Math. japonica, 46, 2, 331-336, (1997) · Zbl 0893.34031
[14] Hodgkin, A.L.; Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol., 117, 500-544, (1952)
[15] Jing, Z.J.; Jia, Z.Y.; Wang, R.Q., Chaos behavior in the discrete BVP oscillator, Int. J. bifurcat. chaos, 12, 3, 619-627, (2002) · Zbl 1069.65141
[16] Jones, C.K.R.T., Stability of travelling wave solution of the fitzhugh – nagumo system, Trans. am. math. soc., 286, 2, 431-469, (1984) · Zbl 0567.35044
[17] Marotto, F.R., Snap-back repellers imply chaos in Rn, J. math. anal. appl., 63, 199-223, (1978) · Zbl 0381.58004
[18] Mattleig, R.M.M.; Molenaar, Ordinary differential equations in theory and practice, (1996), John Wiley & Sons Ltd · Zbl 1001.34500
[19] Mira, C.; Gardini, L.; Barugola, A.; Cathala, J., Chatic dynamics in two-dimensional noninvertible maps, (1996), World Scientific Singapore · Zbl 0906.58027
[20] Murray, J.D., Mathematical biology, (1993), Springer-Verlag · Zbl 0779.92001
[21] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, (1962)
[22] Ranch, J.; Smoller, J., Qualitative theory of the fitzhugh – nagumo equations, Adv. math., 27, 12-44, (1978)
[23] Rinzel, J.; Miller, R.N., Numerical calculation of stable and unstable periodic solutions to the hodgkin – huxley equations, Math. biosci., 49, 27-59, (1980) · Zbl 0429.92014
[24] Rocsoreanu, C.; Giurgiteanu, N.; Georgescu, A., Connections between saddles for the fitzhugh – nagumo system, Int. J. bifurcat. chaos, 11, 2, 533-540, (2001) · Zbl 1090.37549
[25] Seydel, R., Practical bifurcation and stability analysis-from equilibrium to chaos, (1994), Springer-Verlag · Zbl 0806.34028
[26] Smoller, J., Shock waves and reaction diffusion equations, (1994), Springer-Verlag · Zbl 0807.35002
[27] Van der Pol, B.; Van der Mark, J., The heart beat considered as a relaxation oscillation and an electrical model of the heart, Philos, 6, May, 763-775, (1928)
[28] Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos, (1990), Springer-Verlag · Zbl 0701.58001
[29] Winfree, A.T., Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media, Chaos, 1, 303-334, (1991) · Zbl 1031.76502
[30] Zhang, H.; Holdem, A.V., Chaotic meander of spiral waves in the fitzhugh – nagumo system, Chaos, solitons & fractals, 5, 661-670, (1995) · Zbl 0925.92028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.