×

zbMATH — the first resource for mathematics

An Eulerian description of the streaming process in the lattice Boltzmann equation. (English) Zbl 1047.76106
Summary: This paper presents a novel strategy for solving discrete Boltzmann equation (DBE) for simulation of fluid flows. This strategy splits the solution procedure into streaming and collision steps as in the lattice Boltzmann equation (LBE) method. The streaming step can then be carried out by solving pure linear advection equations in an Eulerian framework. This offers two significant advantages over previous methods. First, the relationship between the relaxation parameter and the discretization of the collision term developed from the LBE method is directly applicable to the DBE method. The resulting DBE collision step remains local and poses no constraint on time step. Second, decoupling of the advection step from the collision step facilitates implicit discretization of the advection equation on arbitrary meshes. An implicit unstructured DBE method is constructed based on this strategy and is evaluated using several test cases of flow over a backward-facing step, lid-driven cavity flow, and flow past a circular cylinder. The speedup of convergence for some cases improves by a factor of about 20.

MSC:
76M28 Particle methods and lattice-gas methods
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. rev. fluid mech., 30, 329, (1998) · Zbl 1398.76180
[2] Cao, N.; Chen, S.; Jin, S.; Martínez, D., Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. rev. E, 55, R21, (1997)
[3] Mei, R.; Shyy, W., On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. comput. phys., 143, 426, (1998) · Zbl 0934.76074
[4] Xi, H.; Peng, G.; Chou, S.-H., Finite-volume lattice Boltzmann method, Phys. rev. E, 59, 6202, (1999)
[5] Xi, H.; Peng, G.; Chou, S.-H., Finite-volume lattice Boltzmann schemes in two and three dimensions, Phys. rev. E, 60, 3380, (1999)
[6] Lee, T.; Lin, C.-L., A characteristic Galerkin method for discrete Boltzmann equation, J. comput. phys., 171, 1, (2001)
[7] Wolf-Gladrow, D., Lattice-gas cellular automata and lattice Boltzmann models, (2000), Springer Heidelberg · Zbl 0999.82054
[8] Zienkiewicz, O.C.; Taylor, R., Finite element method, vol. II, (1991), McGraw-Hill New York
[9] Comini, G.; Manzan, M.; Nonino, C., Analysis of finite element schemes for convection-type problems, Int. J. numer. methods fluids, 20, 443, (1995) · Zbl 0838.76038
[10] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component system, Phys. rev., 94, 511, (1954) · Zbl 0055.23609
[11] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. rev. E, 55, R6333, (1997)
[12] Hirsch, C., Numerical computation of internal and external flows, vol. II, (1990), Wiley New York · Zbl 0742.76001
[13] He, X.; Shan, X.; Doolen, G.D., Discrete Boltzmann equation model for nonideal gases, Phys. rev. E, 57, R13, (1998)
[14] He, S.; Chen, S.; Doolen, G.D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. comput. phys., 146, 282, (1998) · Zbl 0919.76068
[15] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier – stokes equation, J. stat. phys., 88, 927, (1997) · Zbl 0939.82042
[16] Sterling, J.D.; Chen, S., Stability analysis of lattice Boltzmann methods, J. comput. phys., 123, 196, (1996) · Zbl 0840.76078
[17] Ferziger, J.H., Numerical methods for engineering applications, (1981), Wiley-Interscience New York · Zbl 0475.76038
[18] McNamara, G.R.; Garcia, A.L.; Alder, B.J., Stabilization of thermal lattice Boltzmann models, J. stat. phys., 81, 395, (1995) · Zbl 1106.82353
[19] Zhang, R.; Chen, H.; Qian, Y.H.; Chen, S., Effective volumetric lattice Boltzmann scheme, Phys. rev. E, 63, 056705, (2001)
[20] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice Boltzmann method. part I. nonuniform mesh grids, J. comput. phys., 129, 357, (1996) · Zbl 0868.76068
[21] He, X.; Doolen, G.D., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. comput. phys., 134, 306, (1997) · Zbl 0886.76072
[22] Teng, S.; Chen, Y.; Ohashi, H., Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme, Int. J. heat and fluid flow, 21, 112, (2000)
[23] Lax, P.D.; Wendroff, B., Systems of conservation laws, Comm. pure appl. math., 13, 217, (1960) · Zbl 0152.44802
[24] van der Vorst, H.A., Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. sci. stat. comput., 13, 2, 631, (1992) · Zbl 0761.65023
[25] Jiang, B.N., The least-squares finite element method: theory and applications in computational fluid dynamics and electromagnetics, (1998), Springer New York
[26] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), Wiley New York · Zbl 0941.76002
[27] Jiang, C.B.; Kawahara, M., The analysis of unsteady incompressible flows by a three-step finite element method, Int. J. numer. methods fluids, 16, 793, (1993) · Zbl 0772.76036
[28] Zienkiewicz, O.C.; Codina, R., A general algorithm for compressible and incompressible flow – part I. the split, characteristic-based scheme, Int. J. numer. methods fluids, 20, 869, (1995) · Zbl 0837.76043
[29] Barton, I.E., The entrance effect of laminar flow over a backward-facing step geometry, Int. J. numer. methods fluids, 25, 633, (1997) · Zbl 0900.76365
[30] Ferziger, J.H.; Perić, M., Computational methods for fluid dynamics, (1999), Springer New York · Zbl 0869.76003
[31] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solutions for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387, (1982) · Zbl 0511.76031
[32] Hou, S.; Zou, Q.; Chen, S.; Dollen, G.; Cogley, A.C., Simulation of cavity flow by the lattice Boltzmann method, J. comput. phys., 118, 329, (1995)
[33] Nieuwstadt, F.; Keller, H.B., Viscous flow past circular cylinders, Comput. fluids, 1, 59, (1973) · Zbl 0328.76022
[34] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. fluid mech., 98, 819, (1980) · Zbl 0428.76032
[35] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS · Zbl 1002.65042
[36] P. Beaudan, Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number, Ph.D Thesis, Stanford University, 1994
[37] Bouard, R.; Coutanceau, M., The early stage of development of the wake behind an impulsively started cylinder for 40<re<104, J. fluid mech., 101, 583, (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.