×

zbMATH — the first resource for mathematics

A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. (English) Zbl 1047.76097
Summary: We discuss a methodology that allows the direct numerical simulation of incompressible viscous fluid flow past moving rigid bodies. The simulation methods rest essentially on the combination of: (a) Lagrange-multiplier-based fictitious domain methods which allow the fluid flow computations to be done in a fixed flow region; (b) finite element approximations of Navier-Stokes equations occurring in the global model; (c) time discretizations by operator splitting schemes in order to treat optimally the various operators present in the model. The above methodology is particularly well suited to the direct numerical simulation of particulate flow, such as the flow of mixtures of rigid solid particles and incompressible viscous fluids, possibly non-Newtonian. We conclude this article with results of various numerical experiments, including the simulation of store separation for rigid airfoils and of sedimentation and fluidization phenomena in two and three dimensions.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76T20 Suspensions
Software:
FEATFLOW
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. H. Hu, N. A. Patankar, and, M. Y. Zhu, Direct numerical simulations of fluid – solid systems using Arbitrary-Lagrangian-Eulerian technique, J. Comput. Phys, this issue. · Zbl 1047.76571
[2] R. Glowinski, T. I. Hesla, D. D. Joseph, T. W. Pan, and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, edited by M. O. Bristeau, G. J. Etgen, W. Fitzgibbon, J. L. Lions, J. Périaux, and M. F. WheelerWiley, Chichester, 1997, pp. 270-279. · Zbl 0919.76077
[3] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow, in Domain Decomposition Methods 10, edited by J. Mandel, C. Farhat, and X. C. CaiAMS, Providence, RI, 1998, pp. 121-137. · Zbl 0923.76109
[4] T. W. Pan, R. Glowinski, T. I. Hesla, D. D. Joseph, and J. Periaux, Numerical simulation of the Rayleigh-Taylor instability for particulate flow, in Proceedings of the Tenth International Conference on Finite Elements in Fluids, January 5-8, 1998, Tucson, Arizona, edited by M. Hafez and J. C. Heinrich, pp. 217-222.
[5] Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D., A distributed Lagrange multiplier/fictitious domain method for particulate flow, Int. J. multiphase flow, 25, 755-794, (1999) · Zbl 1137.76592
[6] Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Periaux, J., A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow, Int. J. numer. meth. fluids, 30, 1043-1066, (1999) · Zbl 0971.76046
[7] Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Periaux, J., A distributed Lagrange multiplier/fictitious domain method for the simulation of flows around moving rigid bodies: application to particulate flow, Comp. meth. appl. mech. eng., 184, 241-267, (2000) · Zbl 0970.76057
[8] R. Glowinski, T. W. Pan, and, D. D. Joseph, Fictitious domain methods for particulate flow in two and three dimensions, in, Proceedings of the International Conference on the Mathematics of Finite Elements and their Applications (MAFELAP 99), edited by, J. R. Whiteman, in press. · Zbl 0988.76051
[9] Desjardins, B.; Esteban, M.J., On weak solution for fluid – rigid structure interaction: compressible and incompressible models, Arch. rational mech. anal., 146, 59-71, (1999) · Zbl 0943.35063
[10] Hu, H.H., Direct simulation of flows of solid – liquid mixtures, Int. J. multiphase flow, 22, 335-352, (1996) · Zbl 1135.76442
[11] Johnson, A.; Tezduyar, T., 3-D simulation of fluid – particle interactions with the number of particles reaching 100, Comp. meth. appl. mech. eng., 145, 301-321, (1997) · Zbl 0893.76043
[12] Maury, B.; Glowinski, R., Fluid – particle flow: A symmetric formulation, C. R. acad. sci. Paris, 324, 1079-1084, (1997) · Zbl 0880.76045
[13] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220-252, (1977) · Zbl 0403.76100
[14] Peskin, C.S.; McQueen, D.M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. comput. phys., 37, 113-132, (1980) · Zbl 0447.92009
[15] Peskin, C.S., Lectures on mathematical aspects of physiology, Lect. appl. math., 19, 69-107, (1981) · Zbl 0461.92004
[16] Fogelson, A.L.; Peskin, C.S., A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles, J. comput. phys., 79, 50-69, (1988) · Zbl 0652.76025
[17] K. Hofler, M. Muller, S. Schwarzer, and B. Wachman, Interacting particle – liquid systems, in High Performance Computing in Science and Engineering, edited by E. Krause and W. JagerSpringer-Verlag, Berlin, 1998, pp. 54-64. · Zbl 1058.82522
[18] Patankar, N.A.; Singh, P.; Joseph, D.D.; Glowinski, R.; Pan, T.W., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. multiphase flow, 26, 1509-1524, (2000) · Zbl 1137.76712
[19] Y. Achdou and Y. Kuznetsov, Algorithms for the mortar element method, in Domain Decomposition Methods in Sciences and Engineering, edited by R. Glowinski, J. Periaux, Z.-C. Shi, and O. WidlundWiley, Chichester, 1997, pp. 33-42.
[20] Brooks, C.L.; Karplus, M.; Pettitt, B.M., A theoretical perspective of dynamics, structure, and thermodynamics, (1988)
[21] Kikuchi, N.; Oden, J.T., Contact problems in elasticity: A study of variational inequalities and finite element methods, (1988) · Zbl 0685.73002
[22] Bertrand, F.; Tanguy, P.A.; Thibault, F., A three-dimensional fictitious domain method for incompressible fluid flow problem, Int. J. numer. meth. fluids, 25, 719-736, (1997) · Zbl 0896.76033
[23] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991) · Zbl 0788.73002
[24] J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, edited by P. G. Ciarlet and J. L. LionsNorth-Holland, Amsterdam, 1991 pp. 523-639. · Zbl 0875.65090
[25] V. Girault, R. Glowinski, and T. W. Pan, A fictitious-domain method with Lagrange multipliers for the Stokes problem, in Applied Nonlinear Analysis, edited by A. Sequeira, H. B. de Veiga, and J. H. VidemanKluwer Academic/Plenum, New York, 1999, pp. 159-174. · Zbl 0954.35127
[26] Chorin, A.J., A numerical method for solving incompressible viscous flow problems, J. comput. phys., 2, 12-26, (1967) · Zbl 0149.44802
[27] Chorin, A.J., On the convergence of discrete approximation to the navier – stokes equations, Math. comp., 23, 341-353, (1968) · Zbl 0184.20103
[28] Chorin, A.J., Numerical study of slightly viscous flow, J. fluid mech., 57, 785-796, (1973)
[29] Glowinski, R.; Pironneau, O., Finite element methods for navier – stokes equations, Annu. rev. fluid mechan., 24, 167-204, (1992) · Zbl 0743.76051
[30] Turek, S., Efficient solvers for incompressible flow problems: an algorithmic and computational approach, (1999) · Zbl 0930.76002
[31] G. I. Marchuk, Splitting and alternating direction methods, in Handbook of Numerical Analysis, Vol. I, edited by P. G. Ciarlet and J. L. LionsNorth-Holland, Amsterdam, 1990, pp. 197-462. · Zbl 0875.65049
[32] Beale, J.T.; Majda, A., Rates of convergence for viscous splitting of the navier – stokes equations, Math. comp., 37, 243-260, (1981) · Zbl 0518.76027
[33] Dean, E.J.; Glowinski, R., A wave equation approach to the numerical solution of the navier – stokes equations for incompressible viscous flow, C. R. acad. sci. Paris, 325, 789-791, (1997) · Zbl 0901.76054
[34] E. J. Dean, R. Glowinski, and T. W. Pan, A wave equation approach to the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations, in Mathematical and Numerical Aspects of Wave Propagation, edited by J. A. De SantoSIAM, Philadelphia, 1998, pp. 65-74. · Zbl 0959.76070
[35] Fortin, M.; Glowinski, R., Augmented Lagrangian methods, (1983)
[36] Glowinski, R.; Le Tallec, P., Augmented Lagrangians and operator splitting methods in nonlinear mechanics, (1989) · Zbl 0698.73001
[37] Glowinski, R., Numerical methods for nonlinear variational problems, (1984) · Zbl 0575.65123
[38] Pironneau, O., Finite element methods for fluids, (1989) · Zbl 0665.73059
[39] Parthasarathy, P., Application of a wave-like equation method for newtonian and non-Newtonian flows, (1999)
[40] J. Martikainen, T. Rossi, and, J. Toivanen, Application of algebraic fictitious domain methods for solving the generalized Stokes problem, in, Book of Abstracts of the Third European Conference on Numerical Mathematics and Advanced Applications (ENUMATH99), Jyväskylä, Finland, July 26-30, 1999, p, 168.
[41] Schwartz, L., Théorie des distributions, (1966)
[42] Clift, R.; Grace, J.R.; Weber, M.E., Bubbles, drops, and particles, (1978)
[43] R. Glowinski, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the control of the Navier-Stokes equations, in Vortex Dynamics and Vortex Methods, edited by C. R. Anderson and C. GreengardAm. Math. Soc. Providence, RI, 1991, pp. 219-301. · Zbl 0751.76046
[44] Pan, T.W., Numerical simulation of the motion of a ball falling in an incompressible viscous fluid, C. R. acad. sci. Paris, 327, 1035-1038, (1999) · Zbl 0953.76053
[45] Golub, G.H.; Van Loan, C., Matrix computations, (1996) · Zbl 0865.65009
[46] T. W. Pan, V. Sarin, R. Glowinski, A. Sameh, and J. Periaux, A fictitious domain method with Lagrange multipliers for the numerical solution of particular flow and its parallel implementation, in Parallel Computational Fluid Dynamics: Development and Applications of Parallel Technology, edited by C. A. Lin, A. Ecer, N. Satofuka, P. Fox, and J. PeriauxNorth-Holland, Amsterdam, 1999, pp. 467-474. · Zbl 0984.76053
[47] Ritz, J.B.; Caltagirone, J.P., A numerical continuous model for the hydrodynamics of fluid particle systems, Int. J. numer. meth. fluids, 30, 1067-1090, (1999) · Zbl 0971.76054
[48] Feng, J.; Hu, H.H.; Joseph, D.D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. 1. sedimentation, J. fluid mech., 261, 95-134, (1994) · Zbl 0800.76114
[49] Fortes, A.F.; Joseph, D.D.; Lundgren, T.S., Nonlinear mechanics of fluidization of beds of spherical particles, J. fluid mech., 177, 467-483, (1987)
[50] Huilgol, R.R.; Phan-Thien, N., Fluid mechanics of viscoelasticity, (1997) · Zbl 0573.76012
[51] Joseph, D.D., Fluid dynamics of viscoelastic liquids, (1990) · Zbl 0698.76002
[52] Joseph, D.D.; Liu, Y.J., Orientation of long bodies falling in a viscoelastic liquid, J. rheology, 37, 961-983, (1993)
[53] Hu, H.H.; Joseph, D.D.; Fortes, A.F., Experiments and direct simulation of fluid particle motions, Int. vid. J. eng. res., 2, 17, (1997)
[54] Young, D.P.; Melvin, R.G.; Bieterman, M.B.; Johnson, F.T.; Samanth, S.S.; Bussoletti, J.E., A locally refined finite rectangular grid finite element method. application to computational physics, J. comput. phys., 92, 1-66, (1991) · Zbl 0709.76078
[55] Roco, M.C., Particulate two-phase flow, (1993) · Zbl 0767.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.