# zbMATH — the first resource for mathematics

Cubature formulae for spheres, simplices and balls. (English) Zbl 1046.41015
The paper is organized in 5 Sections. The first two contain respectively the motivation for the choice of the subject and some results concerning properties of polyharmonic functions. In Section 3, cubature on the sphere $$S(r)=\{x\in\mathbb{R}^n:| x| =r\}$$ on the form $\int_{S(r)}\mu(\xi) \,d\sigma(\xi)\simeq \sum^{m-1}_{j=0} A_j(r)\int_{S(r_j)}\mu(\xi) \,d\sigma(\xi), r\neq r_j$ for any distinct radii $$\{r,r_j\}^{m-1}_{j=0}$$ are investigated. The uniqueness of the above formula which is exact for all $$u\in H^m(B(R))$$, $$R:=\max_{j=0,\dots,m-1}\{r,r\}$$ is proved and its weights $$A_j(r)$$ are obtained. Section 4 is devoted to study the cubature $\int_{B(r)}\mu(| x| )u(x) \,dx\simeq\sum^{m-j}_{j=0} C_j(r) \int_{B(r_j)}\mu(| x| ) u(x) \,dx$ where $$B(r)=\{x\in\mathbb{R}^n:| x| =(\sum^n_{i=1} x_j^2)^{1/2}<r\}$$ and the weight $$\mu$$ is strictly positive $$\mu(t)>0$$, $$t>0$$.

##### MSC:
 41A55 Approximate quadratures 41A63 Multidimensional problems
##### Keywords:
Gaussian cubature formulae; polyharmonic functions
Full Text:
##### References:
 [1] Aronszajn, N.; Greese, T.; Lipkin, L., Polyharmonic functions, (1983), Clarendon Press Oxford [2] Bojanov, B., An extension of the Pizzetti formula for polyharmonic functions, Acta math. hungar., 91, 99-113, (2001) · Zbl 0980.31004 [3] B. Bojanov, Cubature formulae for polyharmonic functions, Recent Progress in Multivariate Approximation, (Witten Bommerholz, 2000), International Series of Numerical Mathematics, Vol. 137, Birkhäuser, Basel, 2001, pp. 49-74. · Zbl 0988.41017 [4] Bojanov, B.; Dimitrov, D., Gaussian extended cubature formulae for polyharmonic functions, Math. comp., 70, 671-683, (2000) · Zbl 0965.31007 [5] Bojanov, B.; Petrov, P., Gaussian interval quadrature formula, Numer. math., 87, 625-643, (2001) · Zbl 0969.41018 [6] Bojanov, B.; Petrova, G., Uniqueness of the Gaussian quadrature for a ball, J. approx. theory, 104, 21-44, (2000) · Zbl 0979.41020 [7] Cools, R., Ph. Rabinowitz, monomial cubature rules Since “stroud”a compilation, J. comput. appl. math., 48, 309-326, (1993) · Zbl 0799.65027 [8] Dimitrov, D., Integration of polyharmonic functions, Math. comp., 65, 1269-1281, (1996) · Zbl 0860.31003 [9] Dubiner, M., The theory of multi-dimensional polynomial approximation, J. anal. math., 67, 39-116, (1995) · Zbl 0857.41006 [10] M. Ganzburg, Polynomial approximation on the m-dimensional ball, Approximation Theory IX, Innov. Applied Mathematics, Vol. I, Vanderbilt Univ. Press, Nashville, TN 1998 pp. 141-148. · Zbl 0932.41005 [11] Nicolescu, M., LES fonctions polyharmoniques, (1936), Hermann Paris · JFM 62.0564.01 [12] Omladic, M.; Pahor, S.; Suhadolc, A., On a new type quadrature formulas, Numer. math., 25, 4, 421-426, (1976) · Zbl 0314.65007 [13] Petrova, G., Cubature formulae for the sphere and the ball in $$R\^{}\{n\}$$, (), 380-384 · Zbl 1036.41017 [14] G. Petrova, Uniqueness of the Gaussian extended cubature for polyharmonic functions, East. J. Approx., to appear. · Zbl 1111.41023 [15] Pizzetti, P., Sulla media dei valore che una funzione dei punti Della spazio assume allasuperticie di una sfera, Rend. lincei, ser., V, XVIII, 1 sem, 182-185, (1909) · JFM 40.0455.01 [16] M. Reimer, On the existence-problem for Gauss-quadrature on the sphere, Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991), NATO Advanced Science Institutes Series C Mathematical and Physical Sciences, Vol. 365, Kluwer Academic Publishers, Dordrecht, 1992, pp. 169-184. · Zbl 0759.41030 [17] Stroud, A., Approximate calculation of multiple integrals, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0379.65013 [18] Xu, Y., Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods appl. anal., 5, 2, 169-184, (1998) · Zbl 0913.33005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.