×

zbMATH — the first resource for mathematics

A numerical method for solving Jaulent-Miodek equation. (English) Zbl 1045.35065
Summary: A numerical method, based on Adomian’s decomposition method (ADM), is presented for the Jaulent-Miodek (JM) equation. We obtain numerical and exact travelling wave solutions of the JM equation with initial conditions. The ADM method provides a better approximation to the exact solution than the classical methods. In order to show the efficiency of this method, exhaustive numerical examples are presented.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35L15 Initial value problems for second-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Debtnath, L., Nonlinear partial differential equations for scientist and engineers, (1997), Birkhäuser Boston
[2] Hong, T.; Wang, Y.Z.; Huo, Y.S., Chin. phys. lett., 15, 550, (1998)
[3] Zhang, J.F., Chin. phys. lett., 16, 4, (1999)
[4] Das, G.C., Phys. plasmas, 4, 2095, (1997)
[5] Lou, S.Y., Chin. phys. lett., 16, 659, (1999)
[6] Fan, E., Chaos solitons fractals, 16, 819, (2003)
[7] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Boston · Zbl 0802.65122
[8] Adomian, G., J. math. anal. appl., 135, 501, (1988)
[9] Wazwaz, A.M., Partial differential equations: methods and applications, (2002), Balkema Rottesdam · Zbl 0997.35083
[10] Kaya, D., Intern. J. comput. math., 72, 531, (1999)
[11] Kaya, D., Bull. Malaysian math. soc., 21, 95, (1998)
[12] Kaya, D., Balkan phys. lett., 8, 100, (2000)
[13] Kaya, D.; El-Sayed, S.M., Chaos solitons fractals, 17, 869, (2003)
[14] Kaya, D.; El-Sayed, S.M., Phys. lett. A, 310, 44, (2003)
[15] S.M. El-Sayed, D. Kaya, Appl. Math. Comput., in press
[16] Cherruault, Y., Kybernetes, 18, 31, (1989)
[17] Cherruault, Y.; Adomian, G., Math. comput. modelling, 18, 103, (1993)
[18] Abbaoui, K.; Cherruault, Y., Comput. math. appl., 28, 103, (1994)
[19] Abbaoui, K.; Cherruault, Y., Comput. math. appl., 29, 103, (1995)
[20] Abbaoui, K.; Pujol, M.J.; Cherruault, Y.; Himoun, N.; Grimalt, P., Kybernetes, 30, 1183, (2001)
[21] Ngarhasta, N.; Some, B.; Abbaoui, K.; Cherruault, Y., Kybernetes, 31, 61, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.