zbMATH — the first resource for mathematics

Semiprime algebras with finiteness conditions. (English) Zbl 1045.16008
The authors prove several appealing results on finite dimensionality in a semiprime algebra \(R\) over a field \(F\). The main theorem is that if \(a,b\in R\) and if \(\dim_FaIb\) is finite for some ideal \(I\) of \(R\), then \(\dim_FbIa=\dim_FaIb\). This result holds either with finite replacing finite dimensional or with \(aI\) replacing \(aIb\). If \(T\) is a right ideal of \(R\) and has zero left annihilator then for \(a\in R\), \(aT\) is finite dimensional over \(F\) (or is finite) forces \(aT=aR\). A final application shows that when every \(F\)-subalgebra of \(R\) with trivial multiplication is finite dimensional then \(R\) is a direct sum of a finite dimensional semiprime \(F\)-algebra and a reduced \(F\)-algebra.

16N60 Prime and semiprime associative rings
16D25 Ideals in associative algebras
16P10 Finite rings and finite-dimensional associative algebras
Full Text: DOI
[1] Beidar K. I., Rings with Generalized Identities (1996) · Zbl 0847.16001
[2] DOI: 10.1090/S0002-9939-1988-0947646-4 · doi:10.1090/S0002-9939-1988-0947646-4
[3] Dalla L., Studia Math. 92 pp 201– (1989)
[4] DOI: 10.1007/BF01895723 · Zbl 0147.28602 · doi:10.1007/BF01895723
[5] Herstein I. N., Carus Math. Monograph 15 (1968)
[6] Jacobson N., PI-Algebras: An Introduction (1975)
[7] DOI: 10.1080/00927879408824851 · Zbl 0806.16017 · doi:10.1080/00927879408824851
[8] Lanski C., Houston J. Math. 18 pp 577– (1992)
[9] DOI: 10.2307/2154780 · Zbl 0845.16016 · doi:10.2307/2154780
[10] Lee T.-K., Algebra Colloq. 3 pp 19– (1996)
[11] Lee T.-K., Taiwanese J. Math. 1 pp 333– (1997)
[12] DOI: 10.1016/0021-8693(69)90029-5 · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[13] DOI: 10.1090/S0002-9904-1973-13162-3 · Zbl 0252.16007 · doi:10.1090/S0002-9904-1973-13162-3
[14] Smyth M. R. F., Proc. Royal Irish Acad. 80 pp 69– (1980)
[15] Yood B., Colloq. Math. 63 pp 295– (1992)
[16] DOI: 10.1090/S0002-9939-01-06049-X · Zbl 0998.46019 · doi:10.1090/S0002-9939-01-06049-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.