×

zbMATH — the first resource for mathematics

The world according to Rényi: Thermodynamics of multifractal systems. (English) Zbl 1044.82001
Summary: We discuss basic statistical properties of systems with multifractal structure. This is possible by extending the notion of the usual Gibbs-Shannon entropy into more general framework: Rényi’s information entropy. We address the renormalization issue for Rényi’s entropy on (multi)fractal sets and consequently show how Rényi’s parameter is connected with multifractal singularity spectrum. The maximal entropy approach then provides a passage between Rényi’s information entropy and thermodynamics of multifractals. Important issues such as Rényi’s entropy versus Tsallis-Havrda-Charvat entropy and PDF reconstruction theorem are also studied. Finally, some further speculations on a possible relevance of our approach to cosmology are discussed.

MSC:
82B03 Foundations of equilibrium statistical mechanics
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Havrda, J.H.; Charvat, F., Kybernatica, 3, 30, (1967)
[2] Tsallis, C.; Tsallis, C., J. stat. phys., Braz. J. phys., 29, 1, (1999)
[3] Rényi, A., Probability theory, (1970), North-Holland Amsterdam · Zbl 0206.18002
[4] Rényi, A., Selected papers of Alfred Rényi, vol. 2, (1976), Akadémia Kiado Budapest
[5] Frisch, U.; Parisi, G., ()
[6] T. Arimitsu, N. Arimitsu, J. Phys. A: Math. Gen. 33 (2000) L235 [CORRIGENDUM: 34 (2001) 673]; T. Arimitsu, N. Arimitsu, Analysis of Accelerations in Turbulence based on Generalized Statistics (2002) [cond-mat/0203240] · Zbl 1051.82002
[7] Aharony, A., ()
[8] Amitrano, C.; Coniglio, A.; di Liberto, F., Phys. rev. lett., 57, 1016, (1986)
[9] Yu, Z.-G.; Anh, V.; Lau, K.-S., Phys. rev. E, 64, 031903, (2001)
[10] Anh, V.V.; Tieng, Q.M.; Tse, Y.K., Int. trans. op. res., 7, 349, (2000)
[11] Mineev-Weinstein, M.; Wiegmann, P.B.; Zabrodin, A., Phys. rev. lett., 84, 5106, (2000)
[12] T. Arimitsu, P. Jizba, M. Sakellariadou, work in progress
[13] Aczél, J., Lectures on functional equations and their applications, (1966), Academic Press New York · Zbl 0139.09301
[14] Balian, R., From microphysics to macrophysics, methods and applications of statistical physics, vol.1, (1991), Springer-Verlag Heidelberg · Zbl 1131.82300
[15] Hartley, R.V., Bell syst. techn. J., 7, 535, (1928)
[16] Kolmogorov, A., Atti Della R. accademia nazionale dei lincei, 12, 388, (1930)
[17] Nagumo, M., Jpn. J. math., 7, 71, (1930)
[18] Aczél, J., Bull. amer. math. soc., 54, 392, (1948)
[19] Hardy, G.H.; Littlewood, J.E.; Pólya, G., Inequalities, (1952), Cambridge University Press Cambridge · Zbl 0047.05302
[20] Shannon, C.E.; Weaver, W., The mathematical theory of communication, (1949), University of Illinois Press New York · Zbl 0041.25804
[21] Feinstein, A., Foundations of information theory, (1958), McGraw-Hill New York · Zbl 0082.34602
[22] Khinchin, A.I., Mathematical foundations of information theory, (1957), Dover Publications Inc New York · Zbl 0088.10404
[23] T.W. Chaudy, J.B. McLeod, Edinburgh Mathematical Notes 43 (1960) 7; for H. Tverberg’s, P.M. Lee’s or D.G. Kendall’s axiomatics of Shannon’s entropy see e.g., S. Guias, Information Theory with Applications [25]
[24] Daróczy, Z., Acta math. acad. sci. hungaricae, 15, 203, (1964)
[25] see e.g., S. Guias, Information Theory with Applications. McGraw-Hill, New York, 1977
[26] Marshall, A.W.; Olkin, I., J. math. anal. appl., 8, 503, (1964)
[27] Abe, S., Phys. lett. A, 271, 74, (2000)
[28] http://tsallis.cat.cbpf.br/biblio.htm
[29] Loève, M., Probability theory, vol. 1, (1977), Springer-Verlag Berlin · Zbl 0359.60001
[30] Schrödinger, E., Statistical thermodynamics, (1989), Dover Publications Inc New York · Zbl 1228.00016
[31] Jaynes, E.T.; Ford, K.W., Information theory and statistical mechanics, vol. 3, (1963), W.A. Benjamin Inc New York
[32] Jaynes, E.T., Papers on probability and statistics and statistical physics, (1983), D. Reidel Publishing Company Boston · Zbl 0501.01026
[33] Szilard, L., Z. phys., 53, 840, (1929)
[34] Brillouin, L., J. appl. phys., 22, 334, (1951)
[35] Mandelbrot, B.B., Fractal-form, chance and dimension, (1977), Freeman San francisco · Zbl 0376.28020
[36] Feder, J., Fractals, (1988), Plenum Press New York · Zbl 0648.28006
[37] Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Schraiman, B.I., Phys. rev. A, 33, 1141, (1986)
[38] Morse, P.M.; Feshbach, H., Methods of theoretical physics, vol. 1, (1953), McGraw-Hill New York · Zbl 0051.40603
[39] Hentschel, H.G.E.; Procaccia, I., Physica D, 8, 435, (1983)
[40] Ruelle, D., Chaotic evolution and strange attractors, (1989), Cambridge University Press Cambridge
[41] Widder, D.V., The Laplace transform, (1946), Princeton University Press Princeton · Zbl 0060.24801
[42] Billingsley, P., Ergodic theory and information, (1965), Wiley New York · Zbl 0141.16702
[43] Caratheodory, C.; Buchdahl, H.A., Math. ann., Am. J. phys., 17, 212, (1949)
[44] Khinchin, A.I., Mathematical foundations of statistical mechanics, (1949), Dover Publications Inc New York · Zbl 0088.10404
[45] P. Jizba, E.S. Tututi, in: U. Heinz (Eds.), 5th International Workshop on Thermal Field Theories and Their Applications 10-14 August 1998, Regensburg, Germany, hep-th/9809110; P. Jizba, Equilibrium and Nonequilibrium Quantum Field Theory, Ph.D. thesis, University of Cambridge, hep-th/9910259
[46] Ball, R.C.; Blumenfeld, R.; Mandelbrot, B.B.; Evertsz, C.J.G., Phys. rev. A, Nature, 348, 143, (1990)
[47] Edgar, G.A., Integral, probability, and fractal measures, (1997), Springer-Verlag New York
[48] Barnsley, M.F., Fractals everywhere, (1988), Academic Press Boston · Zbl 0691.58001
[49] Kullback, S., Information theory and statistics, (1959), Wiley New York · Zbl 0149.37901
[50] Kibble, T.W.; Zurek, W.H., J. phys. A, Phys. rept., 276, 177, (1996)
[51] Hagedorn, R., Nuovo cim. suppl., 3, 147, (1965)
[52] Turok, N., Physica A, 158, 516, (1989)
[53] P. Jizba, T. Arimitsu, see the Proceedings of International Symposium on Nonequilibrium and Nonlinear Dynamics, in: Z. Li, K. Wu, X. Wu, E. Zhao, F. Sakata (Eds.), Nuclear and Other Finite Systems—AIP Conference Proceedings, vol. 597, 1, (2001) p. 341
[54] Feynman, R.P., (), 17
[55] Davis, S.L.; Hendry, P.C.; McClintock, P.V.E., Physica B, 280, 43, (2000)
[56] Kapur, J.M., Math. semin. Delhi, 4, 78, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.