Chen, Goong; Hsu, Sze-Bi; Zhou, Jianxin Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition. (English) Zbl 1044.37019 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, No. 3, 535-559 (2002). Cited in 1 ReviewCited in 29 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37L15 Stability problems for infinite-dimensional dissipative dynamical systems 35B40 Asymptotic behavior of solutions to PDEs 35L15 Initial value problems for second-order hyperbolic equations 35Q30 Navier-Stokes equations 37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems 35L05 Wave equation Keywords:Nonisotropic spatiotemporal chaos; wave equation; van der Pol boundary condition; chaotic vibrations; numerical simulations; period-doubling; homoclinic orbits; Cantor-like invariant sets Citations:Zbl 0938.35088; Zbl 0938.35089 PDF BibTeX XML Cite \textit{G. Chen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, No. 3, 535--559 (2002; Zbl 1044.37019) Full Text: DOI OpenURL References: [1] DOI: 10.1090/S0002-9947-98-02022-4 · Zbl 0916.35065 [2] DOI: 10.1142/S0218127498000280 · Zbl 0938.35088 [3] DOI: 10.1142/S0218127498000292 · Zbl 0938.35089 [4] DOI: 10.1063/1.532670 · Zbl 0959.37027 [5] Collet C., J. de Physique Colloque 39 pp C5– [6] Courant R., Methods of Mathematical Physics (1962) · Zbl 0099.29504 [7] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002 [8] Feigenbaum M., J. Stat. Phys. 21 pp 25– [9] DOI: 10.1115/1.3120369 [10] DOI: 10.1103/PhysRevA.39.2146 [11] DOI: 10.1121/1.405633 [12] Katz R. A., AIP Conf. Proc. 375, in: Chaotic Fractal and Nonlinear Signal Processing (1996) [13] DOI: 10.1103/PhysRevLett.47.1445 [14] DOI: 10.1016/0375-9601(86)90278-1 [15] W. Lauterborn, Chaotic, Fractal and Nonlinear Signal Processing, ed. R. A. Katz (AIP Press, Woodbury, NY, 1996) pp. 217–230. [16] DOI: 10.1121/1.390157 [17] DOI: 10.1016/0375-9601(90)90305-8 [18] Robinson C., Dynamical Systems, Stability, Symbolic Dynamics and Chaos (1995) · Zbl 0853.58001 [19] DOI: 10.1007/978-94-011-1763-0 [20] DOI: 10.1142/S0218127494000216 · Zbl 0808.94029 [21] DOI: 10.1016/0022-5193(79)90258-3 [22] DOI: 10.1109/TCT.1967.1082648 [23] DOI: 10.1103/PhysRevLett.48.492 [24] DOI: 10.1121/1.412061 [25] Stoker J. J., Nonlinear Vibrations (1950) [26] DOI: 10.1121/1.396617 [27] DOI: 10.1063/1.881466 [28] DOI: 10.1119/1.16011 [29] DOI: 10.1103/PhysRevE.48.1806 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.