×

Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition. (English) Zbl 1044.37019


MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
35B40 Asymptotic behavior of solutions to PDEs
35L15 Initial value problems for second-order hyperbolic equations
35Q30 Navier-Stokes equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
35L05 Wave equation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9947-98-02022-4 · Zbl 0916.35065
[2] DOI: 10.1142/S0218127498000280 · Zbl 0938.35088
[3] DOI: 10.1142/S0218127498000292 · Zbl 0938.35089
[4] DOI: 10.1063/1.532670 · Zbl 0959.37027
[5] Collet C., J. de Physique Colloque 39 pp C5–
[6] Courant R., Methods of Mathematical Physics (1962) · Zbl 0099.29504
[7] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[8] Feigenbaum M., J. Stat. Phys. 21 pp 25–
[9] DOI: 10.1115/1.3120369
[10] DOI: 10.1103/PhysRevA.39.2146
[11] DOI: 10.1121/1.405633
[12] Katz R. A., AIP Conf. Proc. 375, in: Chaotic Fractal and Nonlinear Signal Processing (1996)
[13] DOI: 10.1103/PhysRevLett.47.1445
[14] DOI: 10.1016/0375-9601(86)90278-1
[15] W. Lauterborn, Chaotic, Fractal and Nonlinear Signal Processing, ed. R. A. Katz (AIP Press, Woodbury, NY, 1996) pp. 217–230.
[16] DOI: 10.1121/1.390157
[17] DOI: 10.1016/0375-9601(90)90305-8
[18] Robinson C., Dynamical Systems, Stability, Symbolic Dynamics and Chaos (1995) · Zbl 0853.58001
[19] DOI: 10.1007/978-94-011-1763-0
[20] DOI: 10.1142/S0218127494000216 · Zbl 0808.94029
[21] DOI: 10.1016/0022-5193(79)90258-3
[22] DOI: 10.1109/TCT.1967.1082648
[23] DOI: 10.1103/PhysRevLett.48.492
[24] DOI: 10.1121/1.412061
[25] Stoker J. J., Nonlinear Vibrations (1950)
[26] DOI: 10.1121/1.396617
[27] DOI: 10.1063/1.881466
[28] DOI: 10.1119/1.16011
[29] DOI: 10.1103/PhysRevE.48.1806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.