×

zbMATH — the first resource for mathematics

A residual correction method based on finite calculus. (English) Zbl 1043.74045
Summary: A residual correction method based upon an extension of the finite calculus concept is presented. The method is described and applied to the solution of a scalar convection-diffusion problem and the problem of elasticity in the incompressible or quasi-incompressible limit. The formulation permits the use of equal interpolation for displacements and pressure on linear triangles and tetrahedra as well as any low order element type. To add additional stability in the solution, pressure gradient corrections are introduced as suggested from developments of sub-scale methods. Numerical examples are included to demonstrate the performance of the method when applied to typical test problems.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
74B05 Classical linear elasticity
76R99 Diffusion and convection
Software:
FEAP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01436561 · Zbl 0258.65108 · doi:10.1007/BF01436561
[2] DOI: 10.1002/nme.1620030303 · Zbl 0251.73056 · doi:10.1002/nme.1620030303
[3] Brezzi, F. (1974), ”On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, Rev. Française d’Automatique Inform. Rech. Opér., Ser. Rouge Anal. Numér., Vol. 8 No. R-2, pp. 129-51.
[4] DOI: 10.1016/0045-7825(82)90071-8 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[5] DOI: 10.1002/nme.1620121004 · Zbl 0434.73087 · doi:10.1002/nme.1620121004
[6] DOI: 10.1016/S0045-7825(02)00443-7 · Zbl 1083.74584 · doi:10.1016/S0045-7825(02)00443-7
[7] Chiumenti, M., Valverde, Q., Agelet de Saracibar, C. and Cervera, M. (2002b), ”A stabilized formulation for incompressible plasticity using linear triangles and tetrahedral”, Int. J. Plasticity (in press). · Zbl 1083.74584
[8] DOI: 10.1016/0021-9991(67)90037-X · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[9] Chorin, A.J. (1968), ”Numerical solution of incompressible flow problems”, Studies in Numerical Analysis, Vol. 2, pp. 64-71.
[10] DOI: 10.1002/nme.1620100617 · Zbl 0342.65065 · doi:10.1002/nme.1620100617
[11] DOI: 10.1016/S0045-7825(00)00254-1 · Zbl 0998.76047 · doi:10.1016/S0045-7825(00)00254-1
[12] DOI: 10.1016/S0045-7825(99)00194-2 · Zbl 0986.76037 · doi:10.1016/S0045-7825(99)00194-2
[13] DOI: 10.1016/0045-7825(89)90111-4 · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[14] DOI: 10.2514/3.7464 · doi:10.2514/3.7464
[15] DOI: 10.1016/S0045-7825(97)00119-9 · Zbl 0916.76060 · doi:10.1016/S0045-7825(97)00119-9
[16] DOI: 10.1016/S0045-7825(99)00198-X · Zbl 0977.76050 · doi:10.1016/S0045-7825(99)00198-X
[17] Oñate, E. and Arraez, J. (2002), ”Possibilities of finite calculus for deriving advanced computational methods in engineering”, WCCM V Fifth World Congress on Computational Mechanics, 7-12 July 2002, Vienna.
[18] DOI: 10.1016/S0045-7825(01)00306-1 · Zbl 0996.76052 · doi:10.1016/S0045-7825(01)00306-1
[19] DOI: 10.1002/(SICI)1097-0363(19990915)31:1<203::AID-FLD964>3.0.CO;2-Z · Zbl 0982.76062 · doi:10.1002/(SICI)1097-0363(19990915)31:1<203::AID-FLD964>3.0.CO;2-Z
[20] Oñate, E., Rojek, J., Taylor, R.L. and Zienkiewicz, O.C. (2001), ”Linear triangles and tetra-hedra for incompressible problem using a finite calculus formulation”, Proceedings of European Conference on Computational Mechanics, Cracow, Poland, on CD-ROM.
[21] Oñate, E., Rojek, J., Taylor, R.L. and Zienkiewicz, O.C. (2002), ”Finite calculus formulation for analysis of incompressible solids using linear triangles and tetrahedral”, CIMNE Report PI 214, Int. Center for Num. Meth. Engr., May 2002, Barcelona. · Zbl 1041.74546
[22] DOI: 10.1016/0045-7825(88)90116-8 · Zbl 0628.76040 · doi:10.1016/0045-7825(88)90116-8
[23] DOI: 10.1137/0732056 · Zbl 0833.76037 · doi:10.1137/0732056
[24] DOI: 10.1002/nme.1620290802 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[25] DOI: 10.1016/0045-7825(85)90033-7 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[26] DOI: 10.1002/fld.1650200812 · Zbl 0837.76043 · doi:10.1002/fld.1650200812
[27] DOI: 10.1016/S0045-7825(97)00085-6 · Zbl 0918.73134 · doi:10.1016/S0045-7825(97)00085-6
[28] DOI: 10.1016/0045-7825(92)90023-D · Zbl 0779.73078 · doi:10.1016/0045-7825(92)90023-D
[29] DOI: 10.1002/cnm.1630010103 · Zbl 0586.73127 · doi:10.1002/cnm.1630010103
[30] DOI: 10.1002/nme.1620110113 · Zbl 0353.65065 · doi:10.1002/nme.1620110113
[31] DOI: 10.1002/fld.1650200813 · Zbl 0837.76044 · doi:10.1002/fld.1650200813
[32] DOI: 10.1002/nme.1620231007 · Zbl 0614.65115 · doi:10.1002/nme.1620231007
[33] DOI: 10.1016/0045-7825(85)90025-8 · Zbl 0538.73099 · doi:10.1016/0045-7825(85)90025-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.