zbMATH — the first resource for mathematics

Significance testing in nonparametric regression based on the bootstrap. (English) Zbl 1043.62032
Summary: This paper proposes a test for selecting explanatory variables in nonparametric regression. The test does not need to estimate the conditional expectation function given all the variables, but only those which are significant under the null hypothesis. This feature is computationally convenient and solves, in part, the problem of the “curse of dimensionality” when selecting regressors in a nonparametric context. The proposed test statistic is based on functionals of a \(U\)-process. Contiguous alternatives, converging to the null at a rate \(n^{-1/2}\) can be detected. The asymptotic null distribution of the statistic depends on certain features of the data generating process, and asymptotic tests are difficult to implement except in rare circumstances.
We justify the consistency of two easy to implement bootstrap tests which exhibit good level accuracy for fairly small samples, according to the reported Monte Carlo simulations. These results are also applicable to test other interesting restrictions on nonparametric curves, like partial linearity and conditional independence.

62G08 Nonparametric regression and quantile regression
62G09 Nonparametric statistical resampling methods
62G10 Nonparametric hypothesis testing
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI
[1] Beran, R., Le Cam, L. and Millar, P.W. (1987). Convergence of stochastic empirical measures. J. Multivariate Anal. 23 159-168. · Zbl 0643.62007 · doi:10.1016/0047-259X(87)90183-7
[2] Bierens, H. and Ploberger, W. (1997). Asymptotic theory of integrated conditional moment test. Econometrica 65 1153-1174. JSTOR: · Zbl 0927.62085 · doi:10.2307/2171881 · links.jstor.org
[3] Brunk, H.D. (1970). Estimation by isotonic regression. In Nonparametric Techniques in Statistical Inference (M.L. Puri ed.) 177-197. Cambridge Univ. Press.
[4] Duddley, R.M. (1999). Uniform Central Limit Theorems. Cambridge Univ. Press.
[5] de la Pe na, V.H. and Giné, E. (1999). Decoupling: From Dependence to Independence. Springer, Berlin. · Zbl 0918.60021
[6] Eubank, R. and Spiegelman, S. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques, J. Amer. Statist. Assoc. 85 387-392. JSTOR: · Zbl 0702.62037 · doi:10.2307/2289774 · links.jstor.org
[7] Fan, Y. and Li, Q. (1996). Consistent model specification tests: omitted variables and semiparametric functional forms. Econometrica 64 865-890. JSTOR: · Zbl 0854.62038 · doi:10.2307/2171848 · links.jstor.org
[8] Ghosal, S., Sen, A. and Van der Vaart, A. W. (2000). Testing monotonicity of regression. Ann. Statist. 28 1054-1082. · Zbl 1105.62337 · doi:10.1214/aos/1015956707
[9] Giné, E. (1997). Lectures on Some Aspects of the Bootstrap. Ecole de Éte de Calcul de Probabilités de Saint-Flour. Lecture Notes in Math. 1665. Springer, Berlin. (See also www.math.uconn.edu/ gine/Corrections.) URL: · www.math.uconn.edu
[10] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[11] Hart, J.D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, Berlin. · Zbl 0886.62043
[12] Heckman, N.E. (1986). Spline smoothing in a partly linear model. J. Roy. Statist. Soc. Ser. B 48 244-248. JSTOR: · Zbl 0623.62030 · links.jstor.org
[13] Hoffman-Jørgensen, J. (1984). Stochastic processes on Polish spaces. [Published (1991). Various Publication Series No. 39. Matematisk Institute, Aarhus Univ.] · Zbl 0919.60003
[14] Hong-zhy, A. and Bing, C. (1991). A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series. Internat. Statist. Rev. 59 287-307. · Zbl 0748.62049 · doi:10.2307/1403689
[15] Koul, H.L. and Stute, W. (1999). Nonparametric model checks for time series. Ann. Statist. 27 204-236. · Zbl 0955.62089 · doi:10.1214/aos/1018031108
[16] Ledoux, M. and Talagrand, M. (1988). Un crit ere sur les petites boules dans le théor eme limite central. Probab. Theory Related Fields 77 29-47. · Zbl 0617.60008 · doi:10.1007/BF01848129
[17] Nolan, D. and Pollard, D. (1987). U-processes: rates of convergence. Ann. Statist. 15 780-799. · Zbl 0624.60048 · doi:10.1214/aos/1176350374
[18] Robinson, P.M. (1988). Root-n-consistent semiparametric regression. Econometrica 56 931-954. JSTOR: · Zbl 0647.62100 · doi:10.2307/1912705 · links.jstor.org
[19] Rosenblatt, M. (1975). A quadratic measure of deviations of two-dimensional density estimates an a test of independence. Ann. Statist. 3 1-14. · Zbl 0325.62030 · doi:10.1214/aos/1176342996
[20] Sherman, R.P. (1994). Maximal inequalities for degenerate U-processes with applications to optimization estimators. Ann. Statist. 22 439-459. · Zbl 0798.60021 · doi:10.1214/aos/1176325377
[21] Speckman, P. (1988). Kernel smoothing in partially linear models. J. Roy. Statist. Soc. Ser. B 50 413-446. JSTOR: · Zbl 0671.62045 · links.jstor.org
[22] Stute, W. (1994). U-Statistic processes: a martingale approach. Ann. Probab. 22 1725-1744. · Zbl 0832.62043 · doi:10.1214/aop/1176988480
[23] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613-641. · Zbl 0926.62035 · doi:10.1214/aos/1031833666
[24] Stute, W., González-Manteiga, W. and Presedo-Quindimil, M. (1998). Bootstrap approximations in model checks for regression. J. Amer. Statist. Assoc. 93 141-149. JSTOR: · Zbl 0902.62027 · doi:10.2307/2669611 · links.jstor.org
[25] Stute, W., Thies, S. and Zhu, L.X. (1998). Model checks for regression: an innovation process approach. Ann. Statist. 26 1916-1934. · Zbl 0930.62044 · doi:10.1214/aos/1024691363
[26] Sue, J.Q. and Wei, L.J. (1991). A lack of fit test for the mean function in a generalized linear model. J. Amer. Statist. Assoc. 86 420-426. JSTOR: · doi:10.2307/2290587 · links.jstor.org
[27] Van der Vaart, A.W. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21 501-504. · Zbl 0809.62040
[28] Van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence of Empirical Processes. Springer, New York. · Zbl 0862.60002
[29] Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14 1261-1350. · Zbl 0618.62072 · doi:10.1214/aos/1176350142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.