×

zbMATH — the first resource for mathematics

An automatized algorithm to compute infrared divergent multi-loop integrals. (English) Zbl 1042.81565
Summary: We describe a constructive procedure to separate overlapping infrared divergences in multi-loop integrals. Working with a parametric representation in \(D=4-2\epsilon\) dimensions, adequate subtractions lead to a Laurent series in \(\epsilon\) , where the coefficients of the pole and finite terms are sums of regular parameter integrals which can be evaluated numerically. We fully automatized this algorithm by implementing it into algebraic manipulation programs and applied it to calculate numerically some nontrivial 2-loop 4-point and 3-loop 3-point Feynman diagrams. Finally, we discuss the applicability of our method to phenomenologically relevant multi-loop calculations such as the NNLO QCD corrections for \(e^+e^-\rightarrow3\) jets.

MSC:
81T18 Feynman diagrams
Software:
Maple; Foam; BASES/SPRING
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gorishnii, S.G.; Kataev, A.L.; Larin, S.A., Phys. lett. B, Vol. 259, 144, (1991)
[2] Samuel, M.A.; Surguladze, L.R., Phys. rev. lett., Vol. 66, 560, (1991)
[3] van Ritbergen, T.; Vermaseren, J.A.; Larin, S.A., Phys. lett. B, Vol. 400, 379, (1997)
[4] Tkachev, F.V., Phys. lett. B, Vol. 100, 65, (1981)
[5] Chetyrkin, K.G.; Tkachev, F.V., Nucl. phys. B, Vol. 192, 159, (1981)
[6] Grozin, A.G., Jhep, Vol. 0003, 013, (2000)
[7] Gonsalves, R.J., Phys. rev. D, Vol. 28, 1542, (1983)
[8] Kramer, G.; Lampe, B., Z. phys. C, Z. phys. C, Vol. 34, 504, (1989), (Erratum)
[9] Matsuura, T.; van Neerven, W.L., Z. phys. C, Vol. 38, 623, (1988)
[10] Matsuura, T.; van der Marck, S.C.; van Neerven, W.L., Nucl. phys. B, Vol. 319, 570, (1989)
[11] Ussyukina, N.I.; Davydychev, A.I., Phys. lett. B, Vol. 348, 503, (1995)
[12] Davydychev, A.I.; Osland, P., Phys. rev. D, Vol. 59, 014006, (1999)
[13] Zijlstra, E.B.; van Neerven, W.L., Phys. lett. B, Vol. 383, 525, (1992)
[14] Zijlstra, E.B.; van Neerven, W.L., Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Vol. 426, 245, (1994), Erratum
[15] Hamberg, R.; van Neerven, W.L.; Matsuura, T., Nucl. phys. B, Vol. 359, 343, (1991)
[16] van Neerven, W.L.; Zijlstra, E.B., Nucl. phys. B, Vol. 382, 11, (1992)
[17] Bern, Z.; Dixon, L.; Kosower, D.A., Jhep, Vol. 0001, 027, (2000)
[18] Smirnov, V.A., Phys. lett. B, Vol. 460, 397, (1999)
[19] Tausk, J.B., Phys. lett. B, Vol. 469, 225, (1999)
[20] Anastasiou, C.; Glover, E.W.N.; Oleari, C., Nucl. phys. B, Vol. 565, 445, (2000)
[21] Smirnov, V.A.; Veretin, O.L., Nucl. phys. B, Vol. 566, 469, (2000)
[22] Gehrmann, T.; Remiddi, E., Nucl. phys. B, Vol. 580, 485, (2000)
[23] Anastasiou, C.; Gehrmann, T.; Oleari, C.; Remiddi, E.; Tausk, J.B., Nucl. phys. B, Vol. 580, 577, (2000)
[24] Kreimer, D., Phys. lett. B, Vol. 347, 107, (1995)
[25] Kreckel, R.; Kreimer, D.; Schilcher, K., Eur. phys. J. C, Vol. 6, 693, (1999)
[26] Soper, D.E., Phys. rev. lett., Vol. 81, 2638, (1998)
[27] Kinoshita, T.; Ukawa, A., Phys. rev. D, Vol. 15, 1596, (1977)
[28] Collins, J.C.; Soper, D.E.; Sterman, G., ()
[29] Smirnov, V.A., Renormalization and asymptotic expansion, (1991), Birkhäuser Verlag Basel · Zbl 0744.46072
[30] Nakanishi, N., Graph theory and Feynman integrals, (1971), Gordon and Breach New York · Zbl 0212.29203
[31] Zavialov, O.I., Renormalized quantum field theory, (1990), Kluwer, Translation of a Russian book published in 1979 · Zbl 1178.81067
[32] Itzykson, C.; Zuber, J.B., Quantum field theory, (1993), World Scientific · Zbl 0453.05035
[33] Landau, L., Nucl. phys., Vol. 13, 181, (1959)
[34] Sterman, G., Phys. rev. D, Vol. 17, 2773, (1978)
[35] Hepp, K., Commun. math. phys., Vol. 2, 301, (1966)
[36] Jadach, S., submitted to Comp. Phys. Commun.
[37] Kawabata, S., Comp. phys. commun., Vol. 88, 309, (1995)
[38] Maple by Waterloo Maple Corp., Maple V Language Reference Manual, Springer Verlag, 1991
[39] S. Wolfram, Mathematica, Version 3.0
[40] Lewin, L., Polylogarithms and associated functions, (1981), North-Holland · Zbl 0465.33001
[41] Kölbig, K.S.; Mignaco, J.A.; Remiddi, E., Bit, Vol. 10, 38, (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.