×

Dynamical decoupling of open quantum systems. (English) Zbl 1042.81524

Summary: We propose a novel dynamical method for beating decoherence and dissipation in open quantum systems. We demonstrate the possibility of filtering out the effects of unwanted (not necessarily known) system-environment interactions and show that the noise-suppression procedure can be combined with the capability of retaining control over the effective dynamical evolution of the open quantum system. Implications for quantum information processing are discussed.

MSC:

81P99 Foundations, quantum information and its processing, quantum axioms, and philosophy
81V99 Applications of quantum theory to specific physical systems
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] C. W. Gardiner, in: Quantum Noise (1991)
[2] D. J. Wineland, Proc. R. Soc. London Ser. A 454 pp 411– (1998) · Zbl 0925.81012
[3] P. W. Shor, Phys. Rev. A 52 pp R2493– (1995)
[4] A. M. Steane, Phys. Rev. Lett. 77 pp 793– (1996) · Zbl 0944.81505
[5] E. Knill, Phys. Rev. A 55 pp 900– (1997)
[6] A. G. Butkovskiy, in: Control of Quantum Mechanical Processes and Systems (1990)
[7] H. M. Wiseman, Phys. Rev. Lett. 70 pp 548– (1993)
[8] D. Vitali, Phys. Rev. Lett. 79 pp 2442– (1997)
[9] L. Viola, Phys. Rev. A 58 pp 2733– (1998)
[10] M. Ban, J. Mod. Opt. 45 pp 2315– (1998)
[11] R. R. Ernst, in: Principles of Nuclear Magnetic Resonance in One and Two Dimensions (1987)
[12] J. F. Cornwell, in: Group Theory in Physics (1984) · Zbl 0557.20001
[13] L. Goldenberg, Phys. Rev. Lett. 75 pp 1239– (1995) · Zbl 1020.81548
[14] A. P. Heberle, Phys. Rev. Lett. 75 pp 2598– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.