×

zbMATH — the first resource for mathematics

Local asymptotics for polynomial spline regression. (English) Zbl 1042.62035
Summary: We develop a general theory of local asymptotics for least-squares estimates over polynomial spline spaces in a regression problem. The polynomial spline spaces we consider include univariate splines, tensor product splines, and bivariate or multivariate splines on triangulations. We establish asymptotic normality of the estimate and study the magnitude of the bias due to spline approximation. The asymptotic normality holds uniformly over the points where the regression function is to be estimated and uniformly over a broad class of design densities, error distributions and regression functions.
The bias is controlled by the minimum \(L_\infty\) norm of the error when the target regression function is approximated by a function in the polynomial spline space that is used to define the estimate. The control of bias relies on the stability in \(L_\infty\) norm of \(L_2\) projections onto polynomial spline spaces. Asymptotic normality of least-squares estimates over polynomial or trigonometric polynomial spaces is also treated by the general theory. In addition, a preliminary analysis of additive models is provided.

MSC:
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barrow, D. L. and Smith, P. W. (1978). Asymptotic properties of best \(L_2[0,1]\) approximation by splines with variable knots. Quart. Appl. Math. 36 293–304. · Zbl 0395.41012
[2] Chen, Z. (1991). Interaction spline models and their convergence rates. Ann. Statist. 19 1855–1868. JSTOR: · Zbl 0738.62065 · doi:10.1214/aos/1176348374 · links.jstor.org
[3] Chui, C. K. (1988). Multivariate Splines. SIAM, Philadelphia. · Zbl 0687.41018
[4] de Boor, C. (1976). A bound on the \(L_\infty\)-norm of \(L_2\)-approximation by splines in terms of a global mesh ratio. Math. Comp. 30 765–771. JSTOR: · Zbl 0345.65004 · doi:10.2307/2005397 · links.jstor.org
[5] de Boor, C., Höllig, K. and Riemenschneider, S. (1993). Box Splines. Springer, New York. · Zbl 0814.41012
[6] Descloux, J. (1972). On finite element matrices. SIAM J. Numer. Anal. 9 260–265. JSTOR: · Zbl 0242.15009 · doi:10.1137/0709025 · links.jstor.org
[7] DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation. Springer, Berlin. · Zbl 0797.41016
[8] Douglas, J., Dupont, T. and Wahlbin, L. (1975). Optimal \(L_\infty\) error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comp. 29 475–483. JSTOR: · Zbl 0306.65053 · doi:10.2307/2005565 · links.jstor.org
[9] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications . Chapman and Hall, London. · Zbl 0873.62037
[10] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625–633. JSTOR: · Zbl 0649.62035 · doi:10.1093/biomet/73.3.625 · links.jstor.org
[11] Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 521–528. JSTOR: · Zbl 1377.62102 · doi:10.2307/2336990 · links.jstor.org
[12] Hansen, M. (1994). Extended linear models, multivariate splines, and ANOVA. Ph.D. dissertation, Dept. Statistics, Univ. California, Berkeley.
[13] Hansen, M., Kooperberg, C. and Sardy, S. (1998). Triogram models. J. Amer. Statist. Assoc. 93 101–119. · Zbl 0902.62045
[14] Härdle, W. (1990). Applied Nonparametric Regression . Cambridge Univ. Press. · Zbl 0714.62030
[15] Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests . Springer, New York. · Zbl 0886.62043
[16] Huang, J. Z. (1998a). Projection estimation for multiple regression with application to functional ANOVA models. Ann. Statist. 26 242–272. · Zbl 0930.62042 · doi:10.1214/aos/1030563984
[17] Huang, J. Z. (1998b). Functional ANOVA models for generalized regression. J. Multivariate Anal. 67 49–71. · Zbl 0949.62028 · doi:10.1006/jmva.1998.1753
[18] Huang, J. Z. (1999). Asymptotics for polynomial spline regression under weak conditions. Unpublished manuscript.
[19] Huang, J. Z. (2001). Concave extended linear modeling: A theoretical synthesis. Statist. Sinica 11 173–197. · Zbl 0967.62027
[20] Huang, J. Z., Kooperberg, C., Stone, C. J. and Truong, Y. K. (2000). Functional ANOVA modeling for proportional hazards regression. Ann. Statist. 28 961–999. · Zbl 1105.62378
[21] Huang, J. Z. and Stone, C. J. (1998). The \(L_2\) rate of convergence for event history regression with time-dependent covariates. Scand. J. Statist. 25 603–620. · Zbl 0927.62087 · doi:10.1111/1467-9469.00124
[22] Huang, J. Z., Wu, C. O. and Zhou, L. (2000). Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statist. Sinica . · Zbl 1073.62036
[23] Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995a). The \(L_2\) rate of convergence for hazard regression. Scand. J. Statist. 22 143–157. · Zbl 0839.62050
[24] Kooperberg, C., Stone, C. J. and Truong, Y. K. (1995b). Rate of convergence for logspline spectral density estimation. J. Time Ser. Anal. 16 389–401. · Zbl 0832.62082 · doi:10.1111/j.1467-9892.1995.tb00241.x
[25] Lehmann, E. L. (1999). Elements of Large-Sample Theory . Springer, New York. · Zbl 0914.62001
[26] Lehmann, E. L. and Loh, W.-Y. (1990). Pointwise versus uniform robustness of some large-sample tests and confidence intervals. Scand. J. Statist. 17 177–187. · Zbl 0724.62037
[27] Oswald, P. (1994). Multilevel Finite Element Approximations: Theory and Applications. Teubner, Stuttgart. · Zbl 0830.65107
[28] Petrov, V. V. (1975). Sums of Independent Random Variables . Springer, New York. · Zbl 0322.60043
[29] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346–1370. JSTOR: · Zbl 0821.62020 · doi:10.1214/aos/1176325632 · links.jstor.org
[30] Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215–1230. JSTOR: · Zbl 0554.62035 · doi:10.1214/aos/1176346788 · links.jstor.org
[31] Schumaker, L. (1981). Spline Functions: Basic Theory . Wiley, New York. · Zbl 0449.41004
[32] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040–1053. JSTOR: · Zbl 0511.62048 · doi:10.1214/aos/1176345969 · links.jstor.org
[33] Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13 689–705. JSTOR: · Zbl 0605.62065 · doi:10.1214/aos/1176349548 · links.jstor.org
[34] Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590–606. JSTOR: · Zbl 0603.62050 · doi:10.1214/aos/1176349940 · links.jstor.org
[35] Stone, C. J. (1989). Uniform error bounds involving logspline models. In Probability, Statistics and Mathematics: Papers in Honor of Samuel Karlin (T. W. Anderson, K. B. Athreya and D. L. Iglehart, eds.) 335–355. Academic Press, New York. · Zbl 0729.62035
[36] Stone, C. J. (1990). Large-sample inference for logspline models. Ann. Statist. 18 717–741. JSTOR: · Zbl 0712.62036 · doi:10.1214/aos/1176347622 · links.jstor.org
[37] Stone, C. J. (1991). Asymptotics for doubly flexible logspline response models. Ann. Statist. 19 1832–1854. JSTOR: · Zbl 0785.62034 · doi:10.1214/aos/1176348373 · links.jstor.org
[38] Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function estimation (with discussion). Ann. Statist. 22 118–184. JSTOR: · Zbl 0827.62038 · doi:10.1214/aos/1176325361 · links.jstor.org
[39] Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion). Ann. Statist. 25 1371–1470. · Zbl 0924.62036 · doi:10.1214/aos/1031594728
[40] Szegö, G. (1975). Orthogonal Polynomials , 4th ed. Amer. Math. Soc., Providence, RI. · Zbl 0305.42011
[41] Zhou, S., Shen, X. and Wolfe, D. A. (1998). Local asymptotics for regression splines and confidence regions. Ann. Statist. 26 1760–1782. · Zbl 0929.62052 · doi:10.1214/aos/1024691356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.