×

zbMATH — the first resource for mathematics

Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. (English) Zbl 1042.60023
The authors consider spectrally negative Levý processes (these are real-valued random processes with stationary independent increments which have no positive jumps) and determine the joint Laplace transform of the exit time and the exit position from the interval containing the origin of the process reflected in its supremum. This Laplace transform can be written in terms of scale functions that already appeared as a solution to the two-sided exit problem. An optimal stopping problem is outlined which is associated with the price of Russian options. This optimal stopping problem is solved in terms of scale functions which appear in the afore mentioned exit problems. A modification of the optimal stopping problem known as Canadization is considered and it is shown that an explicit solution is also available in terms of scale functions. The paper is concluded with some examples of optimal stopping problem.

MSC:
60G51 Processes with independent increments; Lévy processes
60J99 Markov processes
60G40 Stopping times; optimal stopping problems; gambling theory
91B70 Stochastic models in economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asmussen, S. (1994). Busy period analysis, rare events and transient behaviour in fluid flow models. J. Appl. Math. Stochastic Anal. 7 269–299. · Zbl 0826.60086 · doi:10.1155/S1048953394000262 · eudml:47296
[2] Bertoin, J. (1996). Lévy Processes . Cambridge Univ. Press. · Zbl 0861.60003
[3] Bertoin, J. (1996). On the first exit time of a completely asymmetric stable process from a finite interval. Bull. London Math. Soc. 28 514–520. · Zbl 0863.60068 · doi:10.1112/blms/28.5.514
[4] Bertoin, J. (1997). Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab. 7 156–169. · Zbl 0880.60077 · doi:10.1214/aoap/1034625257
[5] Bingham, N. H. (1975). Fluctuation theory in continuous time. Adv. in Appl. Probab. 7 705–766. · Zbl 0322.60068 · doi:10.2307/1426397
[6] Bingham, N. H. (1976). Continuous branching processes and spectral positivity. Stochastic Process. Appl. 4 217–242. · Zbl 0338.60051 · doi:10.1016/0304-4149(76)90011-9
[7] Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory . Springer, New York. · Zbl 0319.60057
[8] Carr, P. (1998). Randomization and the American put. Review of Financial Studies 11 597–626. · Zbl 1386.91134
[9] Carr, P. and Wu, L. (2003). The finite moment log stable process and option pricing. J. Finance 58 753–778.
[10] Chan, T. (1999). Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab. 9 504–528. · Zbl 1054.91033 · doi:10.1214/aoap/1029962753
[11] Duffie, D. and Harrison, J. M. (1993). Arbitrage pricing of Russian options. Ann. Appl. Probab. 3 641–652. JSTOR: · Zbl 0783.90009 · doi:10.1214/aoap/1177005356 · links.jstor.org
[12] Emery, D. J. (1973). Exit problems for a spectrally positive process. Adv. in Appl. Probab. 5 498–520. · Zbl 0297.60035 · doi:10.2307/1425831
[13] Graversen, S. E. and Peskir, G. (1997). On the Russian option: The expected waiting time. Theory Probab. Appl. 24 416–425.
[14] Heath, D., Resnick, S. and Samorodnitsky, · Zbl 0981.60092
[15] Kyprianou, A. E. and Pistorius, M. R. (2000). Perpetual options through fluctuation theory. Ann. Appl. Probab. 13 1077–1098. · Zbl 1039.60044 · doi:10.1214/aoap/1060202835
[16] Lambert, A. (2000). Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. H. Poincaré Probab. Statist. 36 251–274. · Zbl 0970.60055 · doi:10.1016/S0246-0203(00)00126-6 · numdam:AIHPB_2000__36_2_251_0 · eudml:77658
[17] Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 1 247–257.
[18] Mikhalevich, V. S. (1958). Baysian choice between two hypotheses for the mean value of a normal process. Visn. Kiiv. Univ. Ser. Fiz.-Mat. Nauki 1 101–104.
[19] Mordecki, E. and Moreira, W. (2001). Russian options for a diffusion with negative jumps. Publicaciones Matemáticas del Uruguay 9 37–51.
[20] Peškir, G. and Shiryaev, A. N. (2000). Sequential testing problems for Poisson processes. Ann. Statist. 28 837–859. · Zbl 1081.62546 · doi:10.1214/aos/1015952000 · euclid:aos/1015952000
[21] Pistorius, M. R. (2004). On exit and ergodicity of reflected spectrally negative Lévy process reflected at its infimum J. Theoret. Probab. · Zbl 1049.60042 · doi:10.1023/B:JOTP.0000020481.14371.37
[22] Prabhu, N. U. (1981). Stochastic Storage Processes , Queues , Insurance Risk and Dams . Springer, Berlin. · Zbl 0453.60094
[23] Protter, Ph. (1995). Stochastic Integration and Differential Equations. A New Approach. Springer, Berlin. · Zbl 0694.60047
[24] Rogers, L. C. G. (1984).
[25] Shepp, L. and Shiryaev, A. N. (1993). The Russian option: Reduced regret. Ann. Appl. Probab. 3 603–631. JSTOR: · Zbl 0783.90011 · doi:10.1214/aoap/1177005355 · links.jstor.org
[26] Shepp, L. and Shiryaev, A. N. (1994). A new look at the pricing of the Russian option. Theory Probab. Appl. 39 103–120. · Zbl 0834.60072
[27] Shiryaev, A. N. (1978). Optimal Stopping Rules. Springer, New York. · Zbl 0391.60002
[28] Suprun, V. N. (1976). Problem of destruction and resolvent of terminating processes with independent increments. Ukrainian Math. J. 28 39–45. · Zbl 0349.60075 · doi:10.1007/BF01559226
[29] Winkel, M. (2002). Right inverses of nonsymmetric Lévy processes. Ann. Probab. 30 382–415. · Zbl 1040.60040 · doi:10.1214/aop/1020107772
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.