×

zbMATH — the first resource for mathematics

Automorphisms of nondegenerate CR quadrics and Siegel domains. Explicit description. (English) Zbl 1042.32014
Let \(z= (z^1,\dots, z^n)\), \(w= (w^1,\dots, w^k)\) be coordinates in \(\mathbb{C}^{n+k}\), \(k\geq 1\), and \[ \langle z,z\rangle= (\langle z,z\rangle^1,\dots, \langle z,z\rangle^k) \] be a \(\mathbb{C}^k\)-valued Hermitian form on \(\mathbb{C}^n\). Let \(C\) be the interior of the convex hull of \(\{\langle z,z\rangle: z\in\mathbb{C}^n\}\) and suppose,that \(C\) is an acute cone, i.e. \(C\) does not contain any entire line. Let \(V\supset C\) be an open acute cone in \(\mathbb{R}^k\). The domain \(\Omega_V= \{(z,w)\in \mathbb{C}^{n+k}: \text{Im\,}w- \langle z,z\rangle\in V\}\) is called a Siegel domain of the second kind associated with \(V\), while the quadric \(Q= \{(z, w)\in \mathbb{C}^{n+k}: \text{Im\,}w= \langle z,z\rangle\}\) forms the Silov boundary of \(\Omega_V\).
After recalling the non-degenerateness of quadrics , the authors give an explicit formula for one-parameter groups of automorphisms of arbitrary nondegenerate quadrics and for the automorphisms of Siegel domains of second kind. The authors also introduce a family of \(k\)-dimensional chains, which are analogs of one-dimensional Chern-Moser chains for hyper-quadrics and clarify their structure, which is used for the proof of the main results.

MSC:
32V20 Analysis on CR manifolds
32N05 General theory of automorphic functions of several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belošapka, V.K. Finite-dimensionality of the automorphism group of a real-analytic surface (in Russian),Izv. Akad. Nauk SSSR Ser. Mat.,52(2), 437–442, (1988). English transl. inMath. USSR-Izv.,32, (1989).
[2] Belošapka, V.K. A uniqueness theorem for automorphisms of a nondegenerate surface in the complex space (in Russian),Mat. Zametki,47(3), 17–22, (1990). English transl. inMath. Notes,47, (1990).
[3] Ežov, V.V. and Schmalz, G. Holomorphic automorphisms of quadrics,Math. Z.,216, 453–470, (1994). · Zbl 0806.32007 · doi:10.1007/BF02572334
[4] Ežov, V.V. and Schmalz, G. A matrix Poincaré formula for holomorphic automorphisms of quadrics of higher codimension. Real associative quadrics,J. Geom. Analysis,7(4), 559–573, (1997).
[5] Ežov, V.V. and Schmalz, G. Poincaré automorphisms for nondegenerate CR quadrics,Math. Annalen,298, 79–87, (1994). · Zbl 0847.32015 · doi:10.1007/BF01459726
[6] Ežov, V.V. and Schmalz, G. A simple proof of Belošapka’s theorem on the parametrization of the automorphism group of CR-manifolds,Mat. Zametki (Math. Notes),61(6), 939–942, (1997).
[7] Henkin, G.M. and Tumanov, A.E. Local characterization of holomorphic automorphisms of Siegel domains,Funkt. Analysis,17(4), 49–61, (1983).
[8] Kaup, W., Matsushima, Y., and Ochiai, T. On the automorphisms and equivalences of generalized Siegel domains,Am. J. Math.,92(2), 475–497, (1970). · Zbl 0198.42501 · doi:10.2307/2373335
[9] Palinčak, N. On quadrics of high codimension (in Russian),Mat. zametki,55(5), 110–115, (1994).
[10] Poincaré, H. Les fonctions analytiques de deux variables et la représentation conforme,Rend. Circ. Math. Palermo, 185–220, (1907). · JFM 38.0459.02
[11] Pyatetskii-Shapiro.Automorphic Functions and Geometry of Classical Domains, Gordon and Breach, New York, 1969.
[12] Rothaus, O. Automorphisms of Siegel domains,Am. J. Math.,101(5), 1167–1179, (1979). · Zbl 0443.32022 · doi:10.2307/2374131
[13] Satake, I.Algebraic Structures of Symmetric Domains, Iwanami Shoten and Princeton University Press, 1980. · Zbl 0483.32017
[14] Tumanov, A.E. Finite dimensionality of the group of CR-automorphisms of a standard CR manifold and characteristic holomorphic mappings of Siegel domains (in Russian),USSR Izvestiya,32(3), 655–662, (1989). · Zbl 0666.32022 · doi:10.1070/IM1989v032n03ABEH000804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.