zbMATH — the first resource for mathematics

A new technique for a parallel dealiased pseudospectral Navier-Stokes code. (English) Zbl 1041.76055
The paper introduces a new idea for efficient parallelization of Fourier-Galerkin pseudospectral methods when applied to Navier-Stokes equations. The method is based on a dealiased transposition of data, such that the fast Fourier transform can operate solely on the local processor memory. Numerical examples show the high parallel efficiency of the approach. Possible generalizations to geometrically more complex situations (only cubic domains are considered) are not discussed.

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65Y05 Parallel numerical computation
Full Text: DOI Link
[1] Basu, A.J., A parallel algorithm for the solution of the three-dimensional navier – stokes equations, Parallel comput., 20, 1191-1294, (1994) · Zbl 0817.76054
[2] Briscolini, M., A parallel implementation od a 3D pseudospectral bases code on the IBM 9076 scalable POWER parallel system, Parallel comput., 21, 1849-1862, (1995)
[3] Briggs, D.A.; Ferziger, J.H.; Koseff, J.R.; Monismith, S.G., Entrainment in a shear-free turbulent mixing layer, J. fluid mech., 310, 215-241, (1996) · Zbl 0863.76027
[4] Cambon, C.; Mansour, N.N.; Godeferd, F.S., Energy transfer in rotating turbulence, J. fluid mech., 337, 303-332, (1997) · Zbl 0891.76044
[5] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer Verlag Berlin · Zbl 0658.76001
[6] Canuto, C.; Giberti, C., Parallelism in a highly accurate algorithm for turbulence simulation, (), 157-168
[7] Chen, S.; Shan, X., High-resolution turbulent simulation using the connection machine-2, Comput. in phys., 6, 643-646, (1992)
[8] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation of full and narrow band signals in isotropic turbulence, Fluid mech., 48, 273, (1971)
[9] Dang, K.T., Evaluation of simple subgrid-scale models for the numerical simulation of homogeneous turbulence, Aiaa j., 23, 221-227, (1985)
[10] Fisher, P.F.; Patera, A.T., Parallel simulation of viscous incompressible flows, Ann. rev. fluid mech., 26, 483-527, (1994) · Zbl 0802.76065
[11] Gagne, Y.; Castaing, B., A universal representation without global scaling invariance of energy spectra in developed turbulence, C. R. acad. sci. Paris, serie II, 312, 441-445, (1991) · Zbl 0709.76057
[12] Jackson, E.; She, Z.S.; Orszag, S.A., A case study in parallel computing: I. homogeneous turbulence on a hyphercube, J. sci. comput., 6, 27-45, (1991) · Zbl 0737.76056
[13] Jameson, A.; Schmidt, H.; Turkel, E., Numerical solutions of the Euler equations by finite volume methods using runge – kutta stepping schemes, AIAA paper, 81-1259, (1981)
[14] P.K. Jimack, N. Touheed, An Introduction to MPI for Computational Mechanics, University of Leeds
[15] Jimenez, J.; Wray, A.A.; Saffman, P.G., The structure of intense vorticity in isotropic turbulence, J. fluid mech., 255, 65-90, (1993) · Zbl 0800.76156
[16] Lesieur, M.; Métais, O., New trends in large eddy simulations of turbulence, Ann. rev. fluid mech., 28, 45-83, (1996)
[17] Mansour, N.N.; Wray, A.A., Decay of isotropic turbulence at low Reynolds number, Phys. of fluids, 6, 808-813, (1996) · Zbl 0825.76278
[18] Menevaeau, C.; Katz, J., Scale-invariance and turbulence models for large-eddy simulation, Ann. rev. fluid mech., 32, 1-32, (2000) · Zbl 0988.76044
[19] MPI: a message-passing interface standard, (12 June 1995)
[20] Orzag, S.A., Numerical simulation of incompressible flows within simple boundaries, I. garlekin (spectral) representation, Stud. appl. math., 50, 293-327, (1971)
[21] Pelz, R.B., The parallel Fourier pseudospectral method, J. comput. phys., 92, 296-312, (1991) · Zbl 0709.76105
[22] Ray, T.P., Jets: a star formation perspective, (), 173
[23] Rogallo, R.S., ILLIAC program for the numerical simulation of homogeneous incompressible turbulence, nasa TM-73203, (1977)
[24] Rogallo, R.S., Numerical experiments in homogeneous turbulence, nasa TM-81315, (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.