×

zbMATH — the first resource for mathematics

Simulating quantum mechanics on a quantum computer. (English) Zbl 1040.81505
Summary: Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrödinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac or gauge particles are discussed.

MSC:
81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, (August 1995), AT&T preprint quant-ph/9508027
[2] Simon, D., On the power of quantum computation, (), 116-123
[3] Feynman, R., Simulating physics with computers, Int. J. theoret. phys., 21, 467-488, (1982)
[4] Lloyd, S., Universal quantum simulators, Science, 273, 1073, (1996) · Zbl 1226.81059
[5] Boghosian, B.; Taylor, W., A quantum lattice-gas model for the many-body Schrödinger equation in d dimensions, (April 1996), BU-CCS/PUPT preprint quant-ph/9604035
[6] Boghosian, B.; Taylor, W., Quantum lattice-gas models for the many-body Schrödinger equation, (), BU-CCS/PUPT preprint, quant-ph/9701016 January 1997
[7] Grössing, G.; Zeilinger, A., Quantum cellular automata, Complex systems, 2, 197-208, (1988) · Zbl 0661.68050
[8] Meyer, D., From quantum cellular automata to quantum lattice gases, (March 1996), UCSD preprint quant-ph/9604003
[9] Ekert, A.; Jozsa, R.; Lloyd, S.; DiVincenzo, D.P., Quantum computation, Rev. modern. phys., Sci. amr., Science, 270, 3, 255, (1995)
[10] DiVincenzo, D.P.; Lloyd, S.; Deutsch, D.; Barenco, A.; Ekert, A.; Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.; Margolus, N.H.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H., Elementary gates for quantum computation, (), Phys. rev. A, 52, 3457-3467, (1995)
[11] Feynman, R., Quantum mechanical computers, Found. phys., 16, 507-531, (1986)
[12] D. Deutsch. Quantum computational networks, Proc. Roy. Soc. London, Ser. A 425, 73-90
[13] Nachtergaele, B.; Periwa, V., Quantum logic as a sum over classical logic gates, (June 1996), PUPT preprint quant-ph/9606018
[14] Succi, S.; Benzi, R., Lattice Boltzmann equation for quantum mechanics, Physica D, 69, 327-332, (1993) · Zbl 0798.76080
[15] Succi, S., Numerical solution of the Schrödinger equation using discrete kinetic theory, (1995), IBM ECSEC preprint
[16] Feynman, R.P.; Hibbs, A.R.; Schweber, S.S., Quantum mechanics and path integrals, (), Rev. modern phys., 58, 449-36, (1986), see also Feynman’s unpublished notes as reproduced in
[17] Meyer, D., Quantum lattice gases and their invariants, ()
[18] Meyer, D., Quantum mechanics of lattice gas automata I. one particle plane waves and potentials, (October 1996), UCSD preprint quant-ph/9611005
[19] Frisch, U.; Hasslacher, B.; Pomeau, Y.; Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.-P.; Wolfram, S., Cellular automaton fluids 1: basic theory, Phys. rev. lett., Complex systems, J. stat. phys., 45, 471-526, (1986)
[20] Abrams, D.S.; Lloyd, S., Simulation of many-body Fermi systems on a universal quantum computer, (November 1996), MIT preprint
[21] Bialynicki-Birula, I., Weyl, Dirac and Maxwell equations on a lattice as unitary cellular automata, Phys. rev. D, 49, 6920-6927, (1994)
[22] Nielsen, H.B.; Ninomiya, M., A no-go theorem for regularizing chiral fermions, Phys. lett. B, 105, 219-223, (1981)
[23] Susskind, L., Lattice fermions, Phys. rev. D, 16, 3031-3039, (1977)
[24] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. rev. D, 11, 395, (1975)
[25] Shor, P.W., Fault-tolerant quantum computation, (May 1996), AT&T preprint quant-ph/9605011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.