×

zbMATH — the first resource for mathematics

Roe linearization for the van der Waals gas. (English) Zbl 1039.76038
Summary: An extension of Roe linearization method to nonideal gases is described and applied to the particular case of van der Waals gas. A supplementary relation connecting thermodynamic variables is introduced to decouple the evaluation of intermediate velocity and total specific enthalpy from the determination of intermediate density, needed in Jacobian matrix of the linearization due to general thermodynamic character of the gas. The density value is obtained by solving the supplementary equation, which involves the Roe average of velocity and enthalpy, and that in the case of polytropic van der Waals gas is a third-order algebraic equation. Numerical results are shown including classical and nonclassical behaviour in one-dimensional shock tube problems.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abgrall, R., An extension of Roe’s upwind scheme to algebraic equilibrium real gas models, Comput. fluids, 19, 171, (1991) · Zbl 0721.76061
[2] Argrow, B.M., Computational analysis of dense gas shock tube flow, Shock waves, 6, 241, (1996) · Zbl 0866.76052
[3] Bates, J.W.; Montgomery, D.C., Some numerical studies of exotic shock wave behavior, Phys. fluids, 11, 462, (1999) · Zbl 1147.76316
[4] H. A. Bethe, The theory of shock waves for an arbitrary equation of state, Technical Report 545, Office of Scientific Research and Development, 1942.
[5] Brown, B.P.; Argrow, B.M., Two-dimensional shock tube flow for dense gases, J. fluid. mech., 349, 95, (1997) · Zbl 0902.76052
[6] H. B. Callen, Thermodynamics and An Introduction to Thermostatistics, 2nd ed, Wiley, New York, 1985. · Zbl 0989.80500
[7] Cox, C.F.; Cinnella, P., General solution procedure for flows in local chemical equilibrium, Aiaa j., 32, 519, (1994) · Zbl 0798.76065
[8] M. S. Cramer, Nonclassical dynamics of classical gases, in Nonlinear Waves in Real Fluids, edited by A. KluwickSpringer-Verlag, New York, 1991, pp. 91-145.
[9] Davis, S.F., A simplified TVD finite difference scheme via artificial viscosity, SIAM J. sci. stat. comput., 8, 1, (1987) · Zbl 0689.65058
[10] Glaister, P., An approximate linearized Riemann solver for the Euler equations for real gases, J. comput. phys., 74, 382, (1988) · Zbl 0632.76079
[11] Godlewski, E.; Raviart, P.A., numerical approximation of hyperbolic systems of conservation laws, (1995), Springer-Verlag New York · Zbl 1155.76374
[12] Grossmann, B.; Walters, R.W., Analysis of the flux-split algorithms for Euler’s equations with real gases, Aiaa j., 27, 524, (1989) · Zbl 0666.76094
[13] A. Guardone, and, L. Quartapelle, Exact Roe linearization for van der Waals’ gas, in, Godunov Methods: Theory and Applications, edited by, E. F. Toro, Kluwer/Plenum Academic Press, 2001. · Zbl 0999.76093
[14] A. Guardone, V. Selmin, and, L. Vigevano, An investigation of Roe’s linearization and average for ideal and real gases, Scientific Report DIA-SR 99-01, Politecnico di Milano, Italy, 1999.
[15] Harten, A.; Hyman, J.M., Self adjusting grid methods for one-dimensional hypebolic conservation laws, J. comput. phys., 50, 253, (1983)
[16] Landau, L.D.; Lifshitz, E.M., course of theoretical physics, fluid mechanics, (1959), Pergamon Oxford · Zbl 0146.22405
[17] A. Letellier, and, A. Forestier, Le problem de Riemann en fluide quelconque, Rapport DMT/93.451 C.E.A, Direction de Réacterur Nucléaires, 1993.
[18] LeVeque, R.J., Numerical methods for conservation laws, (1992), Birkhäuser Basel · Zbl 0847.65053
[19] Liou, M.S.; van Leer, B.; Shuen, J.-S., Splitting of inviscid fluxes for real gases, J. comput. phys., 87, 1, (1990) · Zbl 0687.76074
[20] Martin, J.J.; Hou, Y., Development of an equation of state for gases, A.i.ch.e. j., 1, 142, (1955)
[21] Menikoff, R.; Plohr, B.J., The Riemann problem for fluid flow of real material, Rev. mod. phys., 61, 75, (1989) · Zbl 1129.35439
[22] Monaco, J.F.; Cramer, M.S.; Watson, L.T., Supersonic flows of dense gases in cascade configurations, J. fluid. mech., 31, 330, (1997) · Zbl 0895.76038
[23] Mottura, L.; Vigevano, L.; Zaccanti, M., An evalaution of Roe’s scheme generalizations for equilibrium real gas flows, J. comput. phys., 138, 354, (1997) · Zbl 0903.76059
[24] S. Müller, and, A. Voß, An iterative Riemann solver for the Euler equations with noncovex equation of state, IGPM Report 168, RWTH-Aachen, 1999.
[25] Reid, R.C.; Prausnitz, J.M.; Poling, B.E., the properties of gases and liquids, (1987), McGraw-Hill New York
[26] W. J. Rider, and, J. W. Bates, A high-resolution Godunov method for modeling anomalous fluid behavior, in, Godunov Methods: Theory and Applications, edited by, E. F. Toro, Kluwer/Plenum Academic Press, 2001. · Zbl 1064.76581
[27] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[28] Steger, J.L.; Warming, R.F., Flux vector spliting and the inviscid gasdynamics equations with applications to finite-difference methods, J. comput. phys., 40, 263, (1981) · Zbl 0468.76066
[29] Thompson, P.A., A fundamental derivative in gas dynamics, Phys. fluids, 14, 1843, (1971) · Zbl 0236.76053
[30] Thompson, P.A.; Lambrakis, K.C., Negative shock waves, J. fluid. mech., 60, 187, (1973) · Zbl 0265.76085
[31] Toumi, I., A weak formulation for Roe’s approximate Riemann solver, J. comput. phys., 102, 360, (1992) · Zbl 0783.65068
[32] van der Waals, J.D., on the continuity of the gaseous and liquid states, (1988), North-Holland Amsterdam
[33] Vinokur, M.; Montagné, J.L., Generalized flux-vector splitting and roe average for an equilibrium real gas, J. comput. phys., 89, 276, (1990) · Zbl 0701.76072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.