×

zbMATH — the first resource for mathematics

Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: One-dimensional case. (English) Zbl 1039.65068
The authors introduce a weighted essentially nonoscillating (WENO) discrete Galerkin method for conservation laws in one spatial dimension. The method uses a Runge-Kutta scheme to propagate in time both the solution \(u\) and the derivative \(\partial_x u\). The construction of an approximate solution uses an Hermite interpolation of these values, together with a limitation of oscillations. Several example computations are given, comparing the method with more traditional WENO schemes.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
PDF BibTeX Cite
Full Text: DOI
References:
[1] Balsara, D.S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of computational physics, 160, 405-452, (2000) · Zbl 0961.65078
[2] Biswas, R.; Devine, K.D.; Flaherty, J., Parallel, adaptive finite element methods for conservation laws, Applied numerical mathematics, 14, 255-283, (1994) · Zbl 0826.65084
[3] Bouchut, F.; Bourdarias, C.; Perthame, B., A MUSCL method satisfying all the numerical entropy inequalities, Mathematics of computation, 65, 1439-1461, (1996) · Zbl 0853.65091
[4] Burbeau, A.; Sagaut, P.; Bruneau, C.H., A problem-independent limiter for high-order runge – kutta discontinuous Galerkin methods, Journal of computational physics, 169, 111-150, (2001) · Zbl 0979.65081
[5] Cockburn, B.; Hou, S.; Shu, C.-W., The runge – kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of computation, 54, 545-581, (1990) · Zbl 0695.65066
[6] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, Journal of computational physics, 84, 90-113, (1989) · Zbl 0677.65093
[7] Cockburn, B.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of computation, 52, 411-435, (1989) · Zbl 0662.65083
[8] Cockburn, B.; Shu, C.-W., The runge – kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Mathematical modelling and numerical analysis (M2AN), 25, 337-361, (1991) · Zbl 0732.65094
[9] Cockburn, B.; Shu, C.-W., The runge – kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of computational physics, 141, 199-224, (1998) · Zbl 0920.65059
[10] Cockburn, B.; Shu, C.-W., Runge – kutta discontinuous Galerkin method for convection-dominated problems, Journal of scientific computing, 16, 173-261, (2001) · Zbl 1065.76135
[11] Crandall, M.G.; Majda, A., Monotone difference approximations for scalar conservation laws, Mathematics of computation, 34, 1-21, (1980) · Zbl 0423.65052
[12] Dougherty, R.L.; Edelman, A.S.; Hyman, J.M., Nonnegativity-, monotonicity-, or convexity-preserving cubic quintic Hermite interpolation, Mathematics of computation, 52, 471-494, (1989) · Zbl 0693.41004
[13] Friedrichs, O., Weighted essentially non-oscillatory schemes for the interpolation of Mean values on unstructured grids, Journal of computational physics, 144, 194-212, (1998) · Zbl 1392.76048
[14] Harten, A., High resolution schemes for hyperbolic conservation laws, Journal of computational physics, 49, 357-393, (1983) · Zbl 0565.65050
[15] Harten, A.; Engquist, B.; Osher, S.; Chakravathy, S., Uniformly high order accurate essentially non-oscillatory schemes, III, Journal of computational physics, 71, 231-303, (1987) · Zbl 0652.65067
[16] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of computational physics, 150, 97-127, (1999) · Zbl 0926.65090
[17] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, Journal of computational physics, 126, 202-228, (1996) · Zbl 0877.65065
[18] Levy, D.; Puppo, G.; Russo, G., Central WENO schemes for hyperbolic systems of conservation laws, Mathematical modelling and numerical analysis, 33, 547-571, (1999) · Zbl 0938.65110
[19] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, Journal of computational physics, 115, 200-212, (1994) · Zbl 0811.65076
[20] Nakamura, T.; Tanaka, R.; Yabe, T.; Takizawa, K., Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, Journal of computational physics, 174, 171-207, (2001) · Zbl 0995.65094
[21] Qiu, J.; Shu, C.-W., On the construction, comparison, local characteristic decomposition for high order central WENO schemes, Journal of computational physics, 183, 187-209, (2002) · Zbl 1018.65106
[22] J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, submitted to SIAM Journal on Scientific Computing · Zbl 1077.65109
[23] W.H. Reed, T.R. Hill, Triangular mesh methods for neutron transport equation, Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973
[24] Shi, J.; Hu, C.; Shu, C.-W., A technique of treating negative weights in WENO schemes, Journal of computational physics, 175, 108-127, (2002) · Zbl 0992.65094
[25] Shu, C.-W., TVB uniformly high-order schemes for conservation laws, Mathematics of computation, 49, 105-121, (1987) · Zbl 0628.65075
[26] Cockburn, B.; Johnson, C.; Shu, C.-W.; Tadmor, E., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (), 325-432 · Zbl 0927.65111
[27] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of computational physics, 77, 439-471, (1988) · Zbl 0653.65072
[28] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of computational physics, 83, 32-78, (1989) · Zbl 0674.65061
[29] Takewaki, H.; Nishiguchi, A.; Yabe, T., Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic type equations, Journal of computational physics, 61, 261-268, (1985) · Zbl 0607.65055
[30] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of computational physics, 54, 115-173, (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.