×

Normal form theory and spectral sequences. (English) Zbl 1039.34032

The author shows that spectral sequences give us a natural language in which to describe the process of computing the unique normal form. He formulates a normal form theory in terms of cohomology, using the framework of spectral sequences.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Arnol’d, V.I., A spectral sequence for the reduction of functions to normal form, Funkcional. anal. i priložen., 9, 3, 81-82, (1975)
[2] V.I. Arnol’d, Spectral sequences for the reduction of functions to normal forms, in: S.L. Dobolev, A.I. Suslov (Eds.), Problems in Mechanics and Mathematical Physics, Izdat. “Nauka”, Moscow, 1976, pp. 7-20, 297 (Russian).
[3] V.I. Arnol’d, S.M. Guseı̆n-Zade, A.N. Varchenko, The classification of critical points, caustics and wave fronts, Singularities of Differentiable Maps, Vol. I, Birkhäuser Boston Inc., Boston, MA, 1985, Translated from the Russian by Ian Porteous and Mark Reynolds.
[4] Baider, A., Unique normal forms for vector fields and Hamiltonians, J. differential equations, 78, 1, 33-52, (1989) · Zbl 0689.70005
[5] Baider, A.; Churchill, R., Unique normal forms for planar vector fields, Math. Z., 199, 3, 303-310, (1988) · Zbl 0691.58012
[6] Baider, A.; Sanders, J.A., Unique normal formsthe nilpotent Hamiltonian case, J. differential equations, 92, 2, 282-304, (1991) · Zbl 0731.58060
[7] Baider, A.; Sanders, J.A., Further reduction of the takens – bogdanov normal form, J. differential equations, 99, 2, 205-244, (1992) · Zbl 0761.34027
[8] Bambusi, D.; Cicogna, G.; Gaeta, G.; Marmo, G., Normal forms, symmetry and linearization of dynamical systems, J. phys. A, 31, 22, 5065-5082, (1998) · Zbl 0969.34031
[9] Bi, Q.; Yu, P., Computation of normal forms of differential equations associated with non-semisimple zero eigenvalues, Internat. J. bifur. chaos appl. sci. eng., 8, 12, 2279-2319, (1998) · Zbl 0942.34039
[10] Bi, Q.S.; Yu, P., Symbolic software development for computing the normal form of double Hopf bifurcation, Math. comput. modelling, 29, 9, 49-70, (1999) · Zbl 1036.34043
[11] Bi, Q.; Yu, P., Symbolic computation of normal forms for semi-simple cases, J. comput. appl. math., 102, 2, 195-220, (1999) · Zbl 0944.65132
[12] Bott, R.; Tu, L.W., Differential forms in algebraic topology, (1982), Springer New York · Zbl 0496.55001
[13] A.D. Bruno, Part I. The local method of nonlinear analysis of differential equations. Part II. The sets of analyticity of a normalizing transformation, Local Methods in Nonlinear Differential Equations, Springer, Berlin, 1989, Translated from the Russian by William Hovingh and Courtney S. Coleman, With an introduction by Stephen Wiggins.
[14] Bruno, A.D.; Walcher, S., Symmetries and convergence of normalizing transformations, J. math. anal. appl., 183, 3, 571-576, (1994) · Zbl 0804.34040
[15] Bryuno, A.D., Power expansions of solutions of an algebraic or a differential equation, Dokl. akad. nauk, 380, 2, 155-159, (2001) · Zbl 1052.34009
[16] G. Chen, J. Della Dora, Rational normal form for dynamical systems by Carleman linearization, in: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), ACM, New York, 1999, pp. 165-172 (electronic).
[17] Chen, G.; Della Dora, J., An algorithm for computing a new normal form for dynamical systems, J. symbolic comput., 29, 3, 393-418, (2000) · Zbl 0973.34029
[18] Chen, G.; Della Dora, J., Further reductions of normal forms for dynamical systems, J. differential equations, 166, 1, 79-106, (2000) · Zbl 0954.34030
[19] G. Cicogna, G. Gaeta, Nonlinear symmetries and normal forms, in: Symmetry and Perturbation Theory (Rome, 1998), World Science Publishing, River Edge, NJ, 1999, pp. 3-22. · Zbl 0981.34025
[20] Cicogna, G.; Gaeta, G., Symmetry and perturbation theory in nonlinear dynamics, (1999), Springer Berlin · Zbl 0981.34025
[21] Chen, G., Further reduction of normal forms for vector fields, Numer. algorithms, 27, 1, 1-33, (2001) · Zbl 0986.37038
[22] Chen, G., Normal form reduction of matrices depending on a parameter, computation of normal forms and applications, Dyn. contin. discrete impuls. syst. ser. A math. anal., 8, 4, 477-493, (2001) · Zbl 0999.15013
[23] G. Gaeta, On Poincaré renormalized forms, in: Symmetry and Perturbation Theory (Rome, 1998), World Science Publishing, River Edge, NJ, 1999, pp. 178-186.
[24] Gaeta, G., Poincaré renormalized forms, Ann. inst. H. Poincaré phys. théor., 70, 6, 461-514, (1999) · Zbl 0994.34024
[25] G. Gaeta, Erratum: “Reduction of Poincaré normal forms” [Lett. Math. Phys. 42 (1997), no. 2, 103-114; MR 99a:34111]. Lett. Math. Phys. 54 (3) (2000) 235.
[26] Gaeta, G., Algorithmic reduction of poincaré-dulac normal forms and Lie algebraic structure, Lett. math. phys., 57, 1, 41-60, (2001) · Zbl 0991.37033
[27] G. Gaeta, Linearizing resonant normal forms, in: Symmetry and Perturbation Theory (Cala Gonone, 2001), World Science Publishing, River Edge, NJ, 2001, pp. 58-65. · Zbl 1061.37027
[28] Godement, R., Topologie algébrique et théorie des faisceaux, (1958), Hermann Paris
[29] J. McCleary, A history of spectral sequences: origins to 1953, in: History of Topology, North-Holland, Amsterdam, 1999, pp. 631-663. · Zbl 0956.55003
[30] McCleary, J., A User’s guide to spectral sequences, (2001), Cambridge University Press Cambridge · Zbl 0959.55001
[31] Murdock, J., Normal forms and unfoldings for local dynamical systems, Springer monographs in mathematics, (2003), Springer-Verlag New York
[32] Rotman, J., Review of “C.A. Weibel, an introduction to homological algebra”, Bull. amer. math. soc., 33, 473-476, (1996)
[33] J.A. Sanders, Versal normal form computations and representation theory, in: Tournier (Ed.), Computer Algebra and Differential Equations, London Mathematical Society Lecture Note Series, Vol. 193, Cambridge University Press, Cambridge, 1994, pp. 185-210. (Papers from the conference (CADE-92) held in June 1992.) · Zbl 0804.17018
[34] J.A. Sanders, J.-C. van der Meer, Unique normal form of the Hamiltonian 1 : 2-resonance, in: Geometry and Analysis in Nonlinear Dynamics (Groningen, 1989), Pitman Research Notes In Mathematics Series, Vol. 222, Longman Sci. Tech., Harlow, 1992, pp. 56-69. · Zbl 0766.58051
[35] E. Tournier (Ed.), Computer Algebra and Differential Equations, London Mathematical Society Lecture Note Series, Vol. 193, Cambridge University Press, Cambridge, 1994 (Papers from the conference (CADE-92) held in June 1992.).
[36] S. Ushiki, Normal forms for singularities of nonlinear ordinary differential equations, in: Computing Methods in Applied Sciences and Engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 163-171.
[37] Ushiki, S., Normal forms for singularities of vector fields, Japan J. appl. math., 1, 1, 1-37, (1984) · Zbl 0578.58029
[38] Wang, X.; Chen, G.; Wang, D., Unique normal forms for the taken – bogdanov singularity in a special case, C. R. acad. sci. Paris Sér. I math., 332, 6, 551-555, (2001) · Zbl 0996.37064
[39] Weibel, C.A., An introduction to homological algebra, (1994), Cambridge University Press Cambridge · Zbl 0797.18001
[40] Yu, P., Computation of normal forms via a perturbation technique, J. sound vibration, 211, 1, 19-38, (1998) · Zbl 1235.34126
[41] Yu, P., Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. bifur. chaos appl. sci. eng., 9, 10, 1917-1939, (1999) · Zbl 1089.37528
[42] Yu, P., Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique, J. sound vibration, 247, 4, 615-632, (2001) · Zbl 1237.70085
[43] Yu, P.; Yuan, Y., The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue, Dyn. contin. discrete impuls. syst. ser. B appl. algorithms, 8, 2, 219-249, (2001) · Zbl 0985.34029
[44] Yuan, Y.; Yu, P., Computation of simplest normal forms of differential equations associated with a double-zero eigenvalue, Internat. J. bifur. chaos appl. sci. eng., 11, 5, 1307-1330, (2001) · Zbl 1090.37539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.