×

zbMATH — the first resource for mathematics

Gauge-invariant second-order perturbations and non-Gaussianity from inflation. (English) Zbl 1038.83046
Summary: We present the first computation of the cosmological perturbations generated during inflation up to second order in deviations from the homogeneous background solution. Our results, which fully account for the inflaton self-interactions as well as for the second-order fluctuations of the background metric, provide the exact expression for the gauge-invariant curvature perturbation bispectrum produced during inflation in terms of the slow-roll parameters. The bispectrum represents a specific non-Gaussian signature of fluctuations generated by quantum oscillations during slow-roll inflation. However, our findings indicate that detecting the non-Gaussianity in the cosmic microwave background anisotropies emerging from the second-order calculation will be a challenge for the forthcoming satellite experiments.

MSC:
83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lyth, D.H.; Riotto, A.; Riotto, A., Phys. rep., 314, 1, (1999)
[2] Falk, T.; Rangarajan, R.; Srednicki, M., Astrophys. J., 403, L1, (1993)
[3] Gangui, A.; Lucchin, F.; Matarrese, S.; Mollerach, S., Astrophys. J., 430, 447, (1994)
[4] Wang, L.; Kamionkowski, M.; Gangui, A.; Martin, J., Phys. rev. D, Mon. not. R. astron. soc., 313, 323, (2000)
[5] Salopek, D.S.; Bond, J.R., Phys. rev. D, 42, 3936, (1990)
[6] Bruni, M.; Matarrese, S.; Mollerach, S.; Sonego, S., Class. quantum grav., 14, 2585, (1997)
[7] Matarrese, S.; Mollerach, S.; Bruni, M., Phys. rev. D, 58, 043504, (1998)
[8] Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H., Phys. rep., 215, 203, (1992)
[9] Malik, K.A., Ph.D. thesis
[10] Bardeen, J.M., Phys. rev. D, 22, 1882, (1980)
[11] Kodama, H.; Sasaki, M., Prog. theor. phys. suppl., 78, 1, (1984)
[12] Tomita, K.; Tomita, K., Prog. theor. phys., Prog. theor. phys., 47, 416, (1972)
[13] Matarrese, S.; Pantano, O.; Sáez, D.; Matarrese, S.; Pantano, O.; Sáez, D., Phys. rev. lett., Mon. not. R. astron. soc., 271, 513, (1994)
[14] Bardeen, J.M.; Steinhardt, P.J.; Turner, M.S., Phys. rev. D, 28, 679, (1983)
[15] Gupta, S.; Berera, A.; Heavens, A.F.; Matarrese, S., Phys. rev. D, 66, 043510, (2002)
[16] Verde, L.; Wang, L.; Heavens, A.; Kamionkowski, M., Mon. not. R. astron. soc., 313, L141, (2000)
[17] Verde, L.; Jimenez, R.; Kamionkowski, M.; Matarrese, S., Mon. not. R. astron. soc., 325, 412, (2001)
[18] Komatsu, E.; Spergel, N., Phys. rev. D, 63, 063002, (2001)
[19] Komatsu, E.; Wandelt, B.D.; Spergel, D.N.; Banday, A.J.; Gorski, K.M., Astrophys. J., 566, 19, (2002)
[20] Santos, M.G., Phys. rev. lett., 88, 241302, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.