×

zbMATH — the first resource for mathematics

Structured extended finite element methods for solids defined by implicit surfaces. (English) Zbl 1038.74041
Summary: A paradigm is developed for generating structured finite element models from solid models by means of implicit surface definitions. The implicit surfaces are defined by radial basis functions. Internal features, such as material interfaces, sliding interfaces and cracks are treated by enrichment techniques developed in the extended finite element method. Methods for integrating the weak form for such models are proposed. These methods simplify the generation of finite element models. Results presented for several examples show that the accuracy of this method is comparable to the accuracy of standard unstructured finite element methods.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering 50 (4) pp 993– (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[2] Strouboulis, The generalized finite element method, Computer Methods in Applied Mechanics and Engineering 190 pp 4081– (2001) · Zbl 0997.74069 · doi:10.1016/S0045-7825(01)00188-8
[3] Babuška, The partition of unity method, International Journal for Numerical Methods in Engineering 40 (4) pp 727– (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[4] Belytschko, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 (5) pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[5] Moës, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46 (1) pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[6] Dolbow, Discontinuous enrichment in finite elements with a partition of unity method, Finite Elements in Analysis and Design 36 (3-4) pp 235– (2000) · Zbl 0981.74057 · doi:10.1016/S0168-874X(00)00035-4
[7] Strouboulis, The generalized finite element method: an example of its implementation and illustration of its performance, International Journal for Numerical Methods in Engineering 47 (8) pp 1401– (2000) · Zbl 0955.65080 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
[8] Carr JC Beatson RK Cherrie JB Mitchell TJ Fright WR McCallum BC Evans TR Reconstruction and representation of 3D objects with radial basis functions 2001
[9] Turk G Dinh HQ O’Brien JF Yngve G Variational implicit surfaces 1999
[10] Sukumar, Modeling holes and inclusions by level sets in the extended finite element method, Computer Methods in Applied Mechanics and Engineering 190 (46-47) pp 6183– (2001) · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[11] Stolarska, Modelling crack growth by level sets in the extended finite element method, International Journal for Numerical Methods in Engineering 51 (8) pp 943– (2001) · Zbl 1022.74049 · doi:10.1002/nme.201
[12] Moës, Non-planar 3D crack growth by the extended finite element and level sets-Part I: mechanical model, International Journal for Numerical Methods in Engineering 53 (11) pp 2549– (2002) · Zbl 1169.74621 · doi:10.1002/nme.429
[13] Chessa, The extended finite element method (XFEM) for solidification problems, International Journal for Numerical Methods in Engineering 53 (8) pp 1959– (2002) · Zbl 1003.80004 · doi:10.1002/nme.386
[14] Chessa, The extended finite element method for two-phase fluids, Journal of Applied Mechanics (2002)
[15] Wagner, The extended finite element method for rigid particles in Stokes flow, International Journal for Numerical Methods in Engineering 51 (3) pp 293– (2001) · Zbl 0998.76054 · doi:10.1002/nme.169
[16] Turk G O’Brien JF Shape transformation using variational implicit functions 1999 335 342
[17] Belytschko, Element-free Galerkin method for static and dynamic Fracture, International Journal of Solids and Structures 32 (17-18) pp 2547– (1995) · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[18] Babuška, The Finite Element Method and its Reliability (2001)
[19] Usui S Discontinuities in the extended finite element method and beam and shell adaptivity for structural dynamics 2001
[20] Sethian, Journal of Computational Physics 169 (2) pp 503– (2001) · Zbl 0988.65095 · doi:10.1006/jcph.2000.6657
[21] Gravouil, Non-planar 3D crack growth by the extended finite element and level sets-Part II: level set update, International Journal for Numerical Methods in Engineering 53 (11) pp 2569– (2002) · Zbl 1169.74621 · doi:10.1002/nme.430
[22] Fleming, Enriched element-free Galerkin methods for crack tip fields, International Journal for Numerical Methods in Engineering 40 pp 1483– (1998) · doi:10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[23] Timoshenko, Theory of Elasticity (1934)
[24] Goodier, Concentration of stress around spherical and cylindrical inclusion and flaws, Journal of Transactions of the ASME 55 pp 39– (1933)
[25] Delneste, An inelastic finite element model of 4D carbon-carbon composites, AIAA Journal 21 (8) pp 1143– (1983) · Zbl 0543.73100
[26] Charlesworth, The domain decomposition method applied to Poisson’s equation in two dimensions, International Journal for Numerical Methods in Engineering 37 pp 3093– (1994) · Zbl 0822.65082
[27] Glowinski, The fictitious domain method for external incompressible viscous-flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 112 pp 133– (1994) · Zbl 0845.76069 · doi:10.1016/0045-7825(94)90022-1
[28] Oden, Toward a universal H-P adaptive finite-element strategy. 2. A posteriori error estimation, Computer Methods in Applied Mechanics and Engineering 77 (1-2) pp 113– (1989) · Zbl 0723.73075 · doi:10.1016/0045-7825(89)90130-8
[29] Aubard, Cluzel, Damage modeling at two scales for 4D Carbon/Carbon Composites, Computers and Structures 78 pp 91– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.