×

zbMATH — the first resource for mathematics

Belief functions generated by fuzzy and randomized compatibility relations. (English) Zbl 1038.68117
Summary: The standard combinatoric model of belief functions can be generalized in two ways: (1) the crisp compatibility relation is replaced by a fuzzy relation and (2) the values of crisp compatibility relation are observed through a binary information channel with noise and, perhaps, subjected to a deformation, in other terms, the original compatibility relation is replaced by its randomized modification. Both the generalizations are investigated, separately, in more detail.
MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dempster, A.P., Upper and lower probabilities induced by a multi-valued mapping, Ann. math. statist., 38, 2, 325-339, (1967) · Zbl 0168.17501
[2] T. Denoeux, Allowing imprecision in belief representation using fuzzy-valued belief structures, in: IPMU 98, Internat. Conf. on Information Processing and Management of Uncertainty, Vol. I, Paris, 1998, pp. 48-55.
[3] Dubois, D.; Prade, H., Théorie des possibilités—applications à la représentation de connaissances en informatique, (1985), Mason Paris · Zbl 0674.68059
[4] Dubois, D.; Prade, H., Evidence measures based on fuzzy information, Automatica, 21, 5, 547-562, (1985) · Zbl 0596.62007
[5] R. Féron, Ensembles aléatoires flous, C. R. Acad. Sci. Paris, Sér. A (1976) 303-306.
[6] Féron, R., Probabilistic and statistical study of random fuzzy sets, (), 2831-2836
[7] Guiasu, S., Information theory with applications, (1977), McGraw-Hill New York · Zbl 0379.94027
[8] Halmos, P.R., Measure theory, (1950), van Nostrand New York, Toronto, London · Zbl 0117.10502
[9] Kramosil, I., Probabilistic analysis of belief functions, (2001), Kluwer Academic Publishers/Plenum New York, Boston, Dordrecht, London, Moscow · Zbl 0992.03030
[10] Kruse, R.; Meyer, K., Statistics with vague data, (1987), Reidel Dordrecht
[11] Kwakernaak, H., Fuzzy random variables—part idefinitions and theorems; part II: algorithms and examples for the discrete case, Inform. sci., 15, 17, 1-29, (1978), 253-278
[12] Loève, M., Probability theory, (1960), van Nonstrand New York, Toronto, London · Zbl 0108.14202
[13] Nguyen, H.T.; Wang, T., Belief functions and random sets, (), 243-255 · Zbl 0898.60026
[14] Novák, V., Fuzzy sets and their applications, (1989), Adam Hilger Boston, Philadelphia · Zbl 0683.94018
[15] Puri, M.L.; Ralescu, D., Fuzzy random variables, J. math. anal. appl., 114, 409-422, (1986) · Zbl 0592.60004
[16] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press Princeton, NJ · Zbl 0359.62002
[17] Yen, J., Generalizing the dempster – shafer theory to fuzzy sets, IEEE trans. systems man and cybernet., 20, 559-570, (1990) · Zbl 1134.68565
[18] Yen, J., Computing generalized belief functions for continuous fuzzy sets, Internat. J. approx. reasoning, 6, 1-31, (1992) · Zbl 0825.68606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.