×

zbMATH — the first resource for mathematics

Transient analysis of fluid flow models via stochastic coupling to a queue. (English) Zbl 1038.60086
Given a Markovian fluid flow, a sequence of queues on the same probability space is constructed. These queues are stochastically coupled to the fluid flow and can be analyzed using the matrix-geometric method. This eventually provides a characterization of transient results for the fluid model.

MSC:
60K25 Queueing theory (aspects of probability theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01158520 · Zbl 0749.60013 · doi:10.1007/BF01158520
[2] DOI: 10.1016/S0166-5316(00)00020-1 · Zbl 1017.68011 · doi:10.1016/S0166-5316(00)00020-1
[3] DOI: 10.1081/STM-120023564 · Zbl 1021.60073 · doi:10.1081/STM-120023564
[4] Çinlar E., Introduction to Stochastic Processes (1975)
[5] Kobayashi H., IEICE Trans. Commun. 75 pp 1266– (1992)
[6] DOI: 10.1137/1.9780898719734 · Zbl 0922.60001 · doi:10.1137/1.9780898719734
[7] DOI: 10.2307/3214773 · Zbl 0789.60055 · doi:10.2307/3214773
[8] Neuts M.F., Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Approach (1981) · Zbl 0469.60002
[9] DOI: 10.1016/S1388-3437(97)80051-0 · doi:10.1016/S1388-3437(97)80051-0
[10] Ramaswami V., Opsearch 19 pp 238– (1982)
[11] Ramaswami V., Teletraffic Engineering in a Competitive World pp 1019– (1999)
[12] Ramaswami V., Mathematics for the New Millennium (2000)
[13] DOI: 10.1016/S0166-5316(98)00004-2 · doi:10.1016/S0166-5316(98)00004-2
[14] DOI: 10.1016/0166-5316(94)00048-O · Zbl 0875.68034 · doi:10.1016/0166-5316(94)00048-O
[15] DOI: 10.2307/1426527 · Zbl 0484.60072 · doi:10.2307/1426527
[16] Whitt W., Stochastic Process Limits - An Introduction to Stochastic-Process Limits and their Application to Queues (2002) · Zbl 0993.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.