×

zbMATH — the first resource for mathematics

Exceptional string: Instanton expansions and Seiberg-Witten curve. (English) Zbl 1037.81079

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
11F23 Relations with algebraic geometry and topology
14H81 Relationships between algebraic curves and physics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1016/0550-3213(96)00243-X · Zbl 0925.81170 · doi:10.1016/0550-3213(96)00243-X
[2] DOI: 10.1016/S0550-3213(96)00687-6 · Zbl 0925.81239 · doi:10.1016/S0550-3213(96)00687-6
[3] DOI: 10.1016/S0550-3213(96)00690-6 · Zbl 0925.14015 · doi:10.1016/S0550-3213(96)00690-6
[4] DOI: 10.1016/S0920-5632(97)00422-2 · Zbl 0976.81503 · doi:10.1016/S0920-5632(97)00422-2
[5] DOI: 10.1016/S0550-3213(97)00312-X · Zbl 0934.81036 · doi:10.1016/S0550-3213(97)00312-X
[6] Minahan J. A., Phys. 1 pp 167– (1998)
[7] DOI: 10.1016/S0550-3213(98)00426-X · Zbl 0951.81025 · doi:10.1016/S0550-3213(98)00426-X
[8] Hosono S., World Scientific pp 194– (1998)
[9] DOI: 10.4310/ATMP.1999.v3.n1.a7 · Zbl 1062.14504 · doi:10.4310/ATMP.1999.v3.n1.a7
[10] DOI: 10.4310/ATMP.1999.v3.n3.a3 · Zbl 0976.32012 · doi:10.4310/ATMP.1999.v3.n3.a3
[11] DOI: 10.1016/0550-3213(94)00440-P · doi:10.1016/0550-3213(94)00440-P
[12] DOI: 10.1007/BF01160474 · Zbl 0652.14003 · doi:10.1007/BF01160474
[13] DOI: 10.4310/ATMP.1999.v3.n6.a6 · Zbl 0967.81052 · doi:10.4310/ATMP.1999.v3.n6.a6
[14] DOI: 10.2977/prims/1195171662 · Zbl 0713.17014 · doi:10.2977/prims/1195171662
[15] DOI: 10.2977/prims/1195164788 · Zbl 0832.11018 · doi:10.2977/prims/1195164788
[16] DOI: 10.1007/BF02099774 · Zbl 0815.53082 · doi:10.1007/BF02099774
[17] DOI: 10.4310/ATMP.2000.v4.n2.a7 · Zbl 1013.81043 · doi:10.4310/ATMP.2000.v4.n2.a7
[18] DOI: 10.1016/0550-3213(87)90108-8 · doi:10.1016/0550-3213(87)90108-8
[19] DOI: 10.1142/S0217751X97003066 · Zbl 0902.53054 · doi:10.1142/S0217751X97003066
[20] DOI: 10.1016/S0550-3213(00)00013-4 · Zbl 1068.81588 · doi:10.1016/S0550-3213(00)00013-4
[21] DOI: 10.1155/S107379280100040X · Zbl 1060.14017 · doi:10.1155/S107379280100040X
[22] DOI: 10.1016/S0550-3213(00)00655-6 · Zbl 0972.81141 · doi:10.1016/S0550-3213(00)00655-6
[23] DOI: 10.1142/S0129055X01000867 · Zbl 1029.81059 · doi:10.1142/S0129055X01000867
[24] Aldazabal G., Nucl. Phys. 492 pp 119– (1996) · doi:10.1016/S0550-3213(97)80029-6
[25] DOI: 10.1007/BF02099367 · Zbl 0867.14017 · doi:10.1007/BF02099367
[26] DOI: 10.1016/0550-3213(91)90292-6 · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[27] DOI: 10.1016/0550-3213(93)90548-4 · Zbl 0908.58074 · doi:10.1016/0550-3213(93)90548-4
[28] DOI: 10.2140/gt.2001.5.287 · Zbl 1063.14068 · doi:10.2140/gt.2001.5.287
[29] DOI: 10.4310/ATMP.1999.v3.n5.a6 · Zbl 0985.81081 · doi:10.4310/ATMP.1999.v3.n5.a6
[30] Wirthm├╝ller K., Compositio Math. 82 pp 293– (1992)
[31] DOI: 10.1016/0550-3213(94)90214-3 · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[32] DOI: 10.1088/1126-6708/2000/01/043 · Zbl 0990.81581 · doi:10.1088/1126-6708/2000/01/043
[33] DOI: 10.2307/1971295 · Zbl 0509.14035 · doi:10.2307/1971295
[34] DOI: 10.1007/s002200100446 · Zbl 1010.34083 · doi:10.1007/s002200100446
[35] DOI: 10.1016/S0550-3213(97)00527-0 · Zbl 0925.81282 · doi:10.1016/S0550-3213(97)00527-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.