×

zbMATH — the first resource for mathematics

Towards a naturally small cosmological constant from branes in 6D supergravity. (English) Zbl 1036.83025
Summary: We investigate the possibility of self-tuning of the effective 4D cosmological constant in 6D supergravity, to see whether it could naturally be of order \(1/r^4\) when compactified on two dimensions having Kaluza-Klein masses of order \(1/r\). In the models we examine supersymmetry is broken by the presence of non-supersymmetric 3-branes (on one of which we live). If r were sub-millimeter in size, such a cosmological constant could describe the recently-discovered dark energy. A successful self-tuning mechanism would therefore predict a connection between the observed size of the cosmological constant, and potentially observable effects in sub-millimeter tests of gravity and at the Large Hadron Collider. We do find self-tuning inasmuch as 3-branes can quite generically remain classically flat regardless of the size of their tensions, due to an automatic cancellation with the curvature and dilaton of the transverse two dimensions. We argue that in some circumstances six-dimensional supersymmetry might help suppress quantum corrections to this cancellation down to the bulk supersymmetry-breaking scale, which is of order \(1/r\). We finally examine an explicit realization of the mechanism, in which 3-branes are inserted into an anomaly-free version of Salam-Sezgin gauged 6D supergravity compactified on a 2-sphere with nonzero magnetic flux. This realization is only partially successful due to a topological constraint which relates bulk couplings to the brane tension, although we give arguments why these relations may be stable against quantum corrections.

MSC:
83E50 Supergravity
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Weinberg, S., Rev. mod. phys., 61, 1, (1989)
[2] Perlmutter, S.; Riess, A.G.; Bahcall, N.; Ostriker, J.P.; Perlmutter, S.; Steinhardt, P.J., Astrophys. J., Astron. J., Science, 284, 1481, (1999)
[3] Will, C.M.; Will, C.M., Lecture notes from the 1998 SLAC summer institute on particle physics, For a recent summary of experimental bounds on deviations from General Relativity, see · Zbl 0962.83502
[4] Leblond, F.; Leblond, F.; Myers, R.C.; Winters, D.J., Phys. rev. D, Jhep, 0107, 031, (2001)
[5] Chen, J.-W.; Luty, M.A.; Pontón, E.
[6] Carroll, S.M.; Guica, M.M.; Navarro, I.
[7] Cline, J.M.; Descheneau, J.; Giovannini, M.; Vinet, J.
[8] Atwood, D.; Burgess, C.P.; Filotas, E.; Leblond, F.; London, D.; Maksymyk, I., Phys. rev. D, 63, 025007, (2001)
[9] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R.; Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., Phys. lett. B, Phys. rev. D, Phys. lett. B, 436, 257, (1998)
[10] Giudice, G.F.; Rattazzi, R.; Wells, J.D.; Mirabelli, E.A.; Perelstein, M.; Peskin, M.E.; Han, T.; Lykken, J.D.; Zhang, R.; Cheung, K.; Keung, W.-Y.; Cullen, S.; Perelstein, M.; Balázs, C.; Acciarri, M.; Acciarri, M., Nucl. phys. B, Phys. rev. lett., Phys. rev. D, Phys. rev. D, Phys. rev. lett., Phys. rev. lett., Phys. lett. B, Phys. lett. B, 470, 281, (1999), Real graviton emission is discussed in
[11] Cheung, K., Talk given at the 7th International Symposium on Particles, Strings and Cosmology (PASCOS 99), Tahoe City, CA, December 1999
[12] Dudas, E.; Mourad, J.; Accomando, E.; Antoniadis, I.; Benakli, K.; Cullen, S.; Perelstein, M.; Peskin, M.E., Nucl. phys. B, Nucl. phys. B, 579, 3, (2000)
[13] Cullen, S.; Perelstein, M.; Hanhart, C.; Phillips, D.R.; Reddy, S.; Savage, M.J., Phys. rev. lett., Nucl. phys. B, 595, 335, (2001)
[14] Arkani-Hamed, N.; Dimopoulos, S.; Kaloper, N.; Sundrum, R.; Kachru, S.; Schulz, M.B.; Silverstein, E., Phys. lett. B, Phys. rev. D, 62, 045021, (2000)
[15] Forste, S.; Lalak, Z.; Lavignac, S.; Nilles, H.P.; Forste, S.; Lalak, Z.; Lavignac, S.; Nilles, H.P., Phys. lett. B, Jhep, 0009, 034, (2000)
[16] Cline, J.M.; Firouzjahi, H., Phys. rev. D, 65, 043501, (2002)
[17] Marcus, N.; Schwarz, J.H., Phys. lett. B, 115, 111, (1982)
[18] Nishino, H.; Sezgin, E.; Nishino, H.; Sezgin, E., Phys. lett. B, Nucl. phys. B, 278, 353, (1986)
[19] Salam, A.; Sezgin, E., Phys. lett. B, 147, 47, (1984)
[20] Aghababaie, Y.; Burgess, C.P.; Parameswaran, S.; Quevedo, F., Jhep, 0303, 032, (2003)
[21] Alvarez-Gaumé, L.; Witten, E., Nucl. phys. B, 234, 269, (1984)
[22] Green, M.B.; Schwarz, J.H., Phys. lett. B, 149, 117, (1984)
[23] Randjbar-Daemi, S.; Salam, A.; Strathdee, J., Nucl. phys. B, 214, 491, (1983)
[24] Randjbar-Daemi, S.; Salam, A.; Sezgin, E.; Strathdee, J., Phys. lett. B, 151, 351, (1985)
[25] Green, M.B.; Schwarz, J.H.; West, P.C.; Erler, J., Nucl. phys. B, J. math. phys., 35, 1819, (1994)
[26] Weinberg, S., Gravitation and cosmology, (1972), Wiley New York
[27] Antoniadis, I.; Benakli, K.; Laugier, A.; Maillard, T.; Klein, M., Nucl. phys. B, Phys. rev. D, 67, 045021, (2003), See, for instance
[28] Scherk, J.; Schwarz, J.H., Phys. lett. B, 82, 60, (1979)
[29] Dowker, J.S.
[30] Deser, S.; Jackiw, R.; ’t Hooft, G.; Deser, S.; Jackiw, R., Ann. phys., Ann. phys., 153, 405, (1984)
[31] Volkov, D.V.; Akulov, V.P.; Wess, J.; Bagger, J., Supersymmetry and supergravity, Phys. lett. B, 46, 109, (1992), Princeton Univ. Press Princeton, NJ
[32] Nilles, H.P.; Olechowski, M.; Yamaguchi, M.; Mirabelli, E.A.; Peskin, M.E.; Dudas, E.; Mourad, J.; Pradisi, G.; Riccioni, F.; Antoniadis, I.; Benakli, K.; Laugier, A.; Klein, M.; Klein, M.; Burgess, C.P.; Filotas, E.; Klein, M.; Quevedo, F., Nucl. phys. B, Phys. rev. D, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Phys. rev. D, Phys. rev. D, 67, 045021, (2003), See, for instance
[33] Schwarz, J.H.; Berkooz, M.; Leigh, R.G.; Polchinski, J.; Schwarz, J.H.; Seiberg, N.; Witten, E.; Seiberg, N., Phys. lett. B, Nucl. phys. B, Phys. lett. B, 390, 169, (1997)
[34] de Wit, B.; Louis, J.
[35] Sagnotti, A., Phys. lett. B, 294, 196, (1992)
[36] Duff, M.J.; Minasian, R.; Witten, E.; Aldazabal, G.; Font, A.; Ibanez, L.E.; Quevedo, F.; Seiberg, N.; Witten, E., Nucl. phys. B, Phys. lett. B, Nucl. phys. B, 471, 121, (1996)
[37] Arkani-Hamed, N.; Hall, L.J.; Kolda, C.F.; Murayama, H., Phys. rev. lett., 85, 4434, (2000)
[38] Witten, E.; Witten, E.
[39] Burgess, C.P.; Myers, R.C.; Quevedo, F.; Antoniadis, I.; Dudas, E.; Sagnotti, A.; Aldazabal, G.; Uranga, A.M., Phys. lett. B, Phys. lett. B, Jhep, 9910, 024, (1999), For similar string constructions see also
[40] Gibbons, G.W.; Pope, C.N.
[41] Arkani-Hamed, N.; Hall, L.; Smith, D.; Weiner, N., Phys. rev. D, 62, 105002, (2000)
[42] Albrecht, A.; Burgess, C.P.; Ravndal, F.; Skordis, C., Phys. rev. D, 65, 123505, (2002)
[43] Albrecht, A.; Burgess, C.P.; Ravndal, F.; Skordis, C., Phys. rev. D, 65, 123507, (2002)
[44] Cvetic, M.; Lu, H.; Pope, C.N.; Cvetic, M.; Lu, H.; Pope, C.N.; Cvetic, M.; Lu, H.; Pope, C.N.; Sadrzadeh, A.; Tran, T.A., Phys. rev. lett., Nucl. phys. B, Nucl. phys. B, 590, 233, (2000), and references therein · Zbl 1006.83072
[45] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T.R.; Taylor, T.R.; Vafa, C.; Gukov, S.; Vafa, C.; Witten, E.; Gukov, S.; Vafa, C.; Witten, E.; Mayr, P.; Curio, G.; Klemm, A.; Lust, D.; Theisen, S.; Louis, J.; Micu, A.; D’Auria, R.; Ferrara, S.; Vaula, S.; Andrianopoli, L.; D’Auria, R.; Ferrara, S.; Lledo, M.A., Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, New J. phys., Nucl. phys. B, 640, 63, (2000), Erratum
[46] Dabholkar, A.; Hull, C.
[47] Gibbons, G.W.; Güven, R.; Pope, C.N.
[48] Navarro, I.
[49] Kerimo, J.; Lü, H.
[50] Cvetic, M.; Gibbons, G.W.; Pope, C.N.
[51] Angelantonj, C.; Antoniadis, I.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.