zbMATH — the first resource for mathematics

Area preserving group actions on surfaces. (English) Zbl 1036.37010
The objective is to show that there are essentially no actions of \(\text{SL} (n, \mathbb{Z})\), \(n\geq 3\), on closed oriented surfaces which are symplectic or area preserving. The key ingredient is the fact that a finite index subgroup of \(\text{SL} (n, \mathbb{Z})\) with \(n \geq 3\) always contains a subgroup isomorphic to the three-dimensional integer Heisenberg Lie group. Thus, the main result is that, if an almost simple Lie group \(G\) contains a subgroup isomorphic to the three-dimensional integer Heisenberg Lie group, then every homomorphism from \(G\) to a closed oriented surface \(S\) factors through a finite group. Some of the proofs rely on mapping class group techniques that use hyperbolic geometry. Let \(\omega\) be a smooth volume form and \(\text{Diff}_{\omega}(S)\) denote the group of diffeomorphisms preserving \(\omega\). Factorizations results for \(n \geq 4\) were proved by B. Farb and P. Shalen for \(S\neq T^2\) and by J. Rebelo for \(S=T^2\). L. Polterovich obtained a factorization result for \(n \geq 3\) and \(S\) other than \(S^2\) and \(T^2\) and there is a similar result of D. Witte.
At the end, the authors show some results for nilpotent Lie groups. They assume that \(G\) is a finitely generated nilpotent Lie subgroup of \(\text{Diff}_{\omega}(S)_0\). In this case, if \(S\neq S^2\) then \(G\) is abelian and if \(S= S^2\) then \(G\) has an abelian subgroup of index two. So, any finitely generated nilpotent subgroup \(G\) of \(\text{Diff}_{\omega}(S)\) has a finite index metabelian subgroup.

37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)
57M60 Group actions on manifolds and cell complexes in low dimensions
57S25 Groups acting on specific manifolds
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
22F05 General theory of group and pseudogroup actions
Full Text: DOI EMIS EuDML arXiv
[1] G Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc. \((2)\) 13 (1976) 486 · Zbl 0342.60049 · doi:10.1112/jlms/s2-13.3.486
[2] J S Birman, A Lubotzky, J McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107 · Zbl 0551.57004 · doi:10.1215/S0012-7094-83-05046-9
[3] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988) · Zbl 0649.57008
[4] M Brown, J M Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984) 503 · Zbl 0547.57010 · doi:10.2307/2045329
[5] C C Conley, E Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V I: Arnol’d, Invent. Math. 73 (1983) 33 · Zbl 0516.58017 · doi:10.1007/BF01393824 · eudml:143034
[6] B Farb, H Masur, Superrigidity and mapping class groups, Topology 37 (1998) 1169 · Zbl 0946.57018 · doi:10.1016/S0040-9383(97)00099-2
[7] B Farb, P Shalen, Real-analytic actions of lattices, Invent. Math. 135 (1999) 273 · Zbl 0954.22007 · doi:10.1007/s002220050286
[8] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284 · Zbl 0406.00016
[9] J M Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. (1982) · Zbl 0497.58018
[10] J Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8* (1988) 99 · Zbl 0634.58023 · doi:10.1017/S0143385700009366
[11] J Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. \((2)\) 128 (1988) 139 · Zbl 0676.58037 · doi:10.2307/1971464
[12] J Franks, Geodesics on \(S^2\) and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992) 403 · Zbl 0766.53037 · doi:10.1007/BF02100612 · eudml:144001
[13] J Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math. 2 (1996) 1 · Zbl 0891.58033 · emis:journals/NYJM/j/1996/2-1.html · eudml:119495 · nyjm.albany.edu:8000
[14] J Franks, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996) 2637 · Zbl 0862.58006 · doi:10.1090/S0002-9947-96-01502-4
[15] J Franks, Rotation numbers for area preserving homeomorphisms of the open annulus, Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ (1991) 123
[16] J Franks, M Handel, Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol. 7 (2003) 713 · Zbl 1034.37028 · doi:10.2140/gt.2003.7.713 · emis:journals/UW/gt/GTVol7/paper20.abs.html · eudml:123400 · arxiv:math/0303296
[17] M Handel, Zero entropy surface diffeomorphisms, preprint
[18] M Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235 · Zbl 0928.55001 · doi:10.1016/S0040-9383(98)00001-9
[19] M Handel, Commuting homeomorphisms of \(S^2\), Topology 31 (1992) 293 · Zbl 0755.57012 · doi:10.1016/0040-9383(92)90022-A
[20] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173 · Zbl 0584.57007 · doi:10.1016/0001-8708(85)90028-3
[21] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991) · Zbl 0732.22008
[22] J N Mather, Invariant subsets for area preserving homeomorphisms of surfaces, Adv. in Math. Suppl. Stud. 7, Academic Press (1981) 531 · Zbl 0505.58027
[23] J N Mather, Topological proofs of some purely topological consequences of Carathéodory’s theory of prime ends, North-Holland (1982) 225 · Zbl 0506.57005
[24] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 · Zbl 1036.53064 · doi:10.1007/s00222-002-0251-x · arxiv:math/0111050
[25] J C Rebelo, On nilpotent groups of real analytic diffeomorphisms of the torus, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 317 · Zbl 0980.58003 · doi:10.1016/S0764-4442(00)01610-4
[26] J Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A-B 283 (1976) · Zbl 0408.20028
[27] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. \((\)N.S.\()\) 19 (1988) 417 · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[28] D Witte, Arithmetic groups of higher \(\mathbbQ\)-rank cannot act on 1-manifolds, Proc. Amer. Math. Soc. 122 (1994) 333 · Zbl 0818.22006 · doi:10.2307/2161021
[29] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984) · Zbl 0571.58015
[30] R J Zimmer, Actions of semisimple groups and discrete subgroups, Amer. Math. Soc. (1987) 1247 · Zbl 0671.57028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.