zbMATH — the first resource for mathematics

Testing hypotheses in the functional linear model. (English) Zbl 1034.62037
An i.i.d. sample \((X_i,Y_i)_{i=1}^n\) is observed, where \(X_i=X_i(t)\) are \(L_2[0,1]\) random elements and \(Y_i=\int_0^1 \psi(t)X_i(t)dt+\varepsilon_i\), \(\varepsilon_i\) are independent of \(X_i\) zero mean r.v.s with \(E\varepsilon_i^2=\sigma^2\) (unknown). The hypotheses \(H_0:\psi=\psi_0\) is tested against \(\psi\not=\psi_0\). \(H_0\) is reduced to the hypothesis \(\psi=0\) which is tested using the empirical cross-covariance operator \(\Delta_n\): for \(x\in L_2[0,1]\), \[ \Delta_n x=n^{-1}\sum_{i=1}^N Y_i\int X_i(t)x(t)\,dt. \] Consistency of the test is demonstrated. Results of simulations are presented.

62G10 Nonparametric hypothesis testing
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
fda (R)
Full Text: DOI
[1] Ash R. B., Topics in stochastic processes (1975) · Zbl 0317.60014
[2] Azzalini A., J. Roy. Statist. Soc. Ser. B 55 pp 549– (1993)
[3] Bosq D., Nonparametric functional estimation and related topics pp 509– (1991)
[4] DOI: 10.1016/S0167-7152(99)00036-X · Zbl 0962.62081
[5] H. Cardot, F. Ferraty, and P. Sarda (1999 ). Spline estimators for the functional linear model: consistency, applications and Splus implementation. Technical Report, Biometry and Artificial Intelligence , INRAToulouse, France, 1999 .
[6] Castro P., Technometrics 28 pp 329– (1986)
[7] Dudley R. M., Ann. Statist. 39 pp 1563– (1968)
[8] Ferraty F., Comput. Statist., (2002)
[9] Frank I. E., Technometrics 35 pp 109– (1993)
[10] Grenander U., Probabilities on algebraic structures (1963) · Zbl 0131.34804
[11] Hastie T., Technometrics 35 pp 140– (1993)
[12] A. Mas (2002 ). Testing for the mean of random curves: from penalization to dimension selection . Preprint.
[13] Marx B. D., Technometrics 41 pp 1– (1999)
[14] Ramsay J. O., Functional data analysis (1997) · Zbl 0882.62002
[15] Wahba G., J. Roy. Satist. Soc. Ser. B 45 pp 133– (1983)
[16] Whitt W., Z. Wahr. verw. Gebiete 29 pp 39– (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.